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.. Retina: Gateway to the Visual System

The sensor which collects the visual inputs in animals

Efficiently collects and encodes visual inputs

Pre-processing visual information prior to more deeper parts
of, such as the visual cortex, of the brain

Object of study from the earliest neuroscientists, such as
Ramón y Cajal (1852 – 1934) - father of modern neuroscience

A popular area of study in modern neuroscience including
computational neuroscience

Studied at different levels and sciences: biology, chemistry,
image processing, etc.

Many applications: cybernetics, prosthetics, etc.
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.. Main Problems

Modeling:

Develop a model of retinal cells – Bio-realistic & robust

Encoding:

Characterizing motion encoding properties of retinal cells

Decoding:

Given retinal responses due to a known class of motion, how
can the motion parameters can be recovered?
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.. Challenges

Modeling:

Many properties reported yet many parameters unknown or
extremely hard to find from the known observations.

Encoding:

Large bulk of data generated/recorded. Background noise.

Decoding:

Large bulk of data generated/recorded. Background noise.
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.. Structure of Retina: The First “Look”

Vertebrate Eye

Schematic of the Vertebrate Retina
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.. Building Blocks of Retina: The Neurons

Schematic of the a Neuron
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.. Neural Information: “Spikes”
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.. Modeling the Retina: General Construction

Many Possible Strategies

Filter models (Eg. Rodieck, 1965, Citron & Marmarelis, 1987)

Spiking models (Levine, 1992, Fohlmeister et al., 1990)

Stochastic models (Keat et al., 2001)

Proposed Modeling Strategy

Hybrid Model:

Upper layers of the retina are collectively modeled as a
collection of filters, matching the known structural features

Individual ganglion cells are modeled with a spiking cell model

Upper layer (filter) responses synapse to the ganglion cells
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.. Modeling the Retina: Key Cellular Properties

Receptor Fields: Retinal cells have different receptor field structures
(Dearworth & Granda, 2002)

ON Cells: Excitatory center & inhibitory surrounding

OFF Cells: Inhibitory center & excitatory center

ON/OFF Cells: Excitatory center, inhibitory rim and another outer
excitatory rim

ON Cells

Difference of Gaussian
Functions

OFF Cells

Difference of Gaussian
Functions

ON/OFF Cells

Gabor Functions:
Gaussian times cosine
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.. Modeling the Retina: Key Cellular Properties cont’d...

Direction Sensitivity: (Bowling, 1980, Rosenberg & Ariel, 1990)

Some cells are sensitive to motion direction / optical flow

Direction sensitive cells are mostly ON/OFF type

They have a smaller cell body size

Directional response is often characterized by Limaçon functions

Has 3 main directional sensitivities: 180◦, 40◦ and −75◦ (Bowling,
1980)

Classification of Cell Types:
(Marchiafava & Weiler, 1980, Dearworth & Granda, 2002, )

Cells with larger cell body size are called A cells

Can be ON type or OFF type
Not directionally sensitive

Cells with smaller cell body size are called B cells

ON/OFF type
Directionally sensitive
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.. Modeling the Retina: Block Diagrams – A Cell
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.. Modeling the Retina: Block Diagrams – B Cell
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.. Modeling the Retina: Common Filters

Naka Rushton Filter: (Baylor & Hodgkin, 1973)

Models the Phototransconduction events of the photoreceptors

R(I ) =
RmI

n

I n + an

Voltage-to-Conductance Filter: (Baylor & Hodgkin, 1973)

Converts the voltage output from the NR filter to a conductance
response

G (V ) = gmax +
1

Rin
· (Erest − V − E ′

rest)

(Erest − V − ENa+)
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.. Modeling the Retina: Common Filters

Light Adaptive Gain Filter: (Tranchina et al., 1984)

Models the adaption of cells to changing light conditions

H (f , I0) = Hn

[
A (f )

1 + I0B (f )

]

No significant effect for our problem as constant intensity input is used.

Temporal Filter: (Borg-Graham, 2001)

Represent the temporal dynamics of the cellular processes

s(t) = a e−t/τa + b e−t/τb

Too fast for the speeds used. No significant effect again.
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.. Modeling the Retina: Spiking Cell Model

Hodgkin-Huxley Model :

Nobel winning work of Alan Hodgkin and Andrew Huxley in 1952.

Mathematically describes the action potential generation with
electrical characterization of ion channel dynamics of a cell.

Ion channels are modeled as voltage dependent conductances and
channel potentials.

Can be generalized to accommodate various cellular ion channel
dynamics as well as noise.
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.. Modeling the Retina: Hodgkin-Huxley Model

−C
dV

dt
= INa+(V , t) + IK+(V , t) + · · ·+ Ileak(V , t) + Iinput(V , t)

Iinput(V , t) = gexcV + ginh(V − Vinh); Vinh = −0.07mV

For any channel current Ix(V , t), with channel opening parameter r and
channel closing parameter s,

Ix(V , t) = ḡx r
msn(V − V0)

dr

dt
= αr (1− r)− βr r

ds

dt
= αs(1− s)− βss

The α and β quantities can be one of three choices

α., β. =


A(V − V0)

exp(−(V − V0)/B)− 1
(Linoid)

A

exp(−(V − V0)/B) + 1
(Sigmoid)

A exp(−(V − V0)/B) (Exponential)
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.. Modeling the Retina: Hodgkin-Huxley Model cont’d...

Steady state voltage-current graph for the

sodium channel. (From Lasater &

Witkovsky, 1990

When, for example,
dr

dt
= 0

rss =
αr

αr + βr

Need to find two functional forms
and the parameter values for αr , βr .
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.. Modeling the Retina: Ion Channel Parameters & Noise

Parameter Estimation for HH Model:

Lasater & Witkovsky, 1990, and Liu & Lasater, 1994, reported the
electrical properties of turtle ganglion cells

Hodgkin-Huxley Model requires parameters to be estimated for a
set of nonlinear functions using only steady state observations

Adaptations of gradient search and steepest descent methods were
used for parameter estimation

Was exceedingly difficult to match the spike responses due to high
dimensionality of parameters

Noise:

Retinal cells produce a lot of activity due to background noise

Noise is modeled as a random current input to the HH Model
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.. Cell Distribution on the Turtle Retina: The Visual Streak

Cells of the turtle retina has a visual streak structure, as opposed to
the fovea structure found in, for example in primates.

Cell distributions were computed using the data reported by
Peterson & Ulinski, in 1979 and 1982.

A patch from the center of the retina is used in our study.

Distribution of cells on turtle retina; color coded according to cell density
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.. Problem Description

Main Problem :

...1 How are the motion parameters of a target moving along the patch
encoded by the cells?

...2 How well can we decode the motion parameters given the patch
response?

Classes of Motion Parameters :

...1 Direction of motion of a target moving at constant speed, across
the center of the patch

...2 Speed of a target moving at constant speed, across the center of
the patch

Eventual Goal :

Can we recursively estimate the motion parameters (speed and
direction) of a target given the cell responses?
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.. Experiment Setup

Patch Properties

Located at the center of the visual streak

Total 520 cells:

A Cells ≈ 50 each ON & OFF
B Cells ≈ 140 from each type

Simulation repeated 60 times for each input

q

Schematic depiction of

the experimental setup
“Direction Experiment”

Fixed speed (taked 0.8 seconds to cross the patch)

Angles 0◦ to 358◦ at 2◦ steps

Left to right along the visual streak is 0◦

“Velocity Experiment”

Multiple speeds takes 0.4 to 2 seconds to cross the patch

Each with Angles 0◦ to 330◦ at 30◦ steps
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.. Analyzing Neural Data

Challenge: Large dimension of data.

Principle Component Analysis PCA

Also known as discrete Karhunen-Loève transform (KLT)

Used to obtain a lower dimensional representation of recorded data.

Popular tool in neural information processing

Point Processes

Counting processes, in particular Poisson Processes, are intensively
been adopted for many neurological problems (E.g. Brown, Barbieri,
Snyder)

Neural activities caused by action potentials constitute point
processes
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.. Counting Processes

.
Definition (Counting Processes - Snyder 1971)
..

.

. ..

.

.

Let ω ∈ Ω be a finitely denumerable point set in a closed interval [0,T ]
where T > 0. Therefore, each ω can be enumerated in the form
{t1(ω), t2(ω), . . . , tn(ω)}, where 0 ≤ t1(ω) ≤ t2(ω) ≤ · · · ≤ tn(ω) ≤ T
and n < ∞. Define {Nt(ω) : 0 ≤ t ≤ T} by

Nt(ω) =



0, 0 ≤ t ≤ t1(ω)

1, t1(ω) < t ≤ t2(ω)
...

n − 1, tn−1(ω) < t ≤ tn(ω)

n, tn(ω) < t ≤ T

Then for each fixed t ∈ [0,T ], Nt(ω) is an integer-valued, discrete
random variable. For each fixed ω ∈ Ω, N0(ω) = 0 and Nt(ω) is a
piecewise constant, left continuous function of t with unit positive jumps
at t1(ω), t2(ω), . . . , tn(ω). Then {Nt(ω) : 0 ≤ t ≤ T} is a counting
process.
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.. Poisson Processes

.
Definition (Poisson Process)
..

.

. ..

.

.

A Poisson process is a is a counting process {Nt : t ≥ t0} with the
following three properties:

...1 Pr [N0 = 0] = 1

...2 For t0 ≤ s < t, the increment Ns,t = Nt − Ns is Poisson distributed
with parameter Λt − Λs . That is,

Pr (Ns,t = n) =
(Λt − Λs)

n

n!
exp (− (Λt − Λs)) ,

for n = 0, 1, 2, . . . and Λt is a nonnegative, nondecreasing function
of t.

...3 {Nt : t ≥ t0} has independent increments.
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.. Useful Definitions

.
Definition (Orderliness)
..

.

. ..

.

.

A counting process {Nt : t ≥ t0}, and the underlying point process as
well, is called orderly at time t ≥ t0 if for any given ε > 0, there exists a
δ > 0, only dependent on t and ε such that,
Pr (Nt,t+δ′ > 1) ≤ εPr (Nt,t+δ′ = 1) for all δ′ ∈ (0, δ).

.
Definition (Conditional Orderliness)
..

.

. ..

.

.

Let P be an arbitrary event determined by the random variables
{Nσ : t0 ≤ σ < t}. A counting process {Nt : t ≥ t0}, and also the
underlying point process, is conditionally orderly at time t ≥ t0 if for any
P and any ε > 0, there exists a δ > 0, which depends only on t and ε
such that Pr (Nt,t+δ′ > 1 |P ) ≤ εPr (Nt,t+δ′ = 1 |P ) for all δ′ ∈ (0, δ).

.
Definition (Evolution Without Aftereffects)
..

.

. ..

.

.

A point process on [t0,∞) is said to evolve without aftereffects if for any
t ≥ t0, the realization of points during the interval [t,∞) does not
depend in on the of events that have transpired in the interval [t0, t).
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.. Conditions for Poisson Processes

.
Theorem (Conditions for Poisson Processes)
..

.

. ..

.

.

Let {Nt : t ≥ t0} be the counting process associated with a point process
on [t0,∞). Suppose that:

...1 The point process is uniformly orderly on [t0, t) for all t ≥ t0,

...2 The point process evolves without aftereffects,

...3 Points does not occur at preassigned times,

...4 There is no finite interval in [t0,∞) where points occur for certainty,

...5 Pr (Nt0 = 0) = 1

Then {Nt : t ≥ t0} is a Poisson counting process with a continuous
parameter function.
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.. Conditions for Poisson Processes

.
Theorem (Alternate Conditions for Poisson Processes)
..

.

. ..

.

.

Let {Nt : t ≥ t0} be the counting process associated with a point process
on [t0,∞). Suppose that:

...1 The point process is conditionally orderly,

...2 For all t ≥ t0 and for an arbitrary event P associated with the
random variables {Nt : t0 ≤ σ < t}, the limit of
Pr (Nt,t+δ = 1 |P ) /δ exists as δ tends to zero, and the limit is
finite, integrable function of t alone. Let this limit function be λt ,

λt = limδ↓0
Pr (Nt,t+δ = 1 |P )

δ
and

∫ t

s

λσdσ exists and is finite for

all finite intervals [s, t), t0 ≤ s ≤ t,

...3 Pr (Nt0 = 0) = 1.

Then {Nt : t ≥ t0} is a Poisson counting process with an absolutely

continuous parameter function Λt =
∫ t

t0
λσdσ
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.. Applying Poisson Processes to Model Neuron Data !?

When a cell fires, there is a brief refractory period during which the
cell can no longer produce spikes.

This violates the condition “Evolution without aftereffects”.

Furthermore, the actual spiking pattern depends on the input light
condition, and this complicates the process.

So, neural signals cannot be modeled using the simple Poisson
processes!
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.. Self-Exciting Counting Processes

.
Definition (Self-Exciting Counting Processes)
..

.

. ..

.

.

Let {Nt : t ≥ t0} be a counting process and assume the following
properties:

...1 {Nt : t ≥ t0} is conditionally orderly

...2 The limit of the function a (∆t,Nt) defined by

a (∆t,Nt) =

{
Pr

(
Nt,t+∆t = 1 |Nt

)
/∆t, for Nt = 0

Pr
(
Nt,t+∆t = 1 |Nt ; τ1, τ2, . . . , τNt

)
/∆t, for Nt ≥ 1

exists and finite as ∆t tends to zero for almost every realization of

{Nt : t ≥ t0}. Here τi is the time of occurrence of the ith count of
the point process.

...3 Pr (N0 = 0) = 1

Then {Nt : t ≥ t0} is a self-exciting counting process.
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.. Doubly Stochastic Poisson Process

.
Definition (Doubly Stochastic Poisson Process)
..

.

. ..

.

.

{Ni (t) : t ≥ t0} is a doubly stochastic Poisson process with intensity
process {λt (xt) : t ≥ t0} if for almost every given path of the process
{xt : t ≥ t0}, N is a Poisson process with intensity function λt (xt). In
other words, {Ni (t) : t ≥ t0} is conditionally a Poisson process with
intensity function λt (xt) given {xt : t ≥ t0}.

.
Theorem (Characterization of a Doubly Stochastic Poisson Process as a
Self-Exciting Point Processes)
..

.

. ..

.

.

Let {Nt : t ≥ t0} be a doubly stochastic Poisson process with intensity
process {λt (xt) : t ≥ t0}, and suppose E [λt (xt)] < ∞ for all t ≥ t0.
Then {Nt : t ≥ t0} is a self-exciting counting process with intensity

process
{
λ̂t : t ≥ t0

}
, where λ̂t = E [λt (xt) |Nσ : t0 ≤ σ < t ] .
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.. Pooled Counting Processes

Component Process 1

Component Process 2

Component Process k

Pooled Point Process

.
Theorem (Limit theorem for Pooled Point Processes)
..

.

. ..

.

.

Suppose the component counting processes {Ni (t) : t ≥ t0} for
i = 1, 2, . . . , k are mutually independent and uniformly sparse for time t
finite. Then the pooled counting process {Mk(t) : t ≥ t0} converges in
distribution to a Poisson process with intensity {λt : t ≥ t0} if and only if

both limk→∞
∑k

i=1 Pr (Ni (t) > 1) = 0 and

limk→∞
∑k

i=1 Pr (Ni (t) = 1) =
∫ t

t0
λσdσ for t0 ≤ t < ∞
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.. Applying the Theory of Counting Processes

We can model the retinal responses as self exciting Point Processes

Since individual retinal cells are independent encoders and therefore,
also uniformly sparse, we can pool the responses of a “large”
number of cells and approximate by an inhomogeneous Poisson
Process.

Since this response is driven by an input which is, in general
stochastic, we can expect the approximate limit process to be a
Doubly Stochastic Poisson Process.

We use some more theorems for this verification purpose.
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.. Time Rescaling Theorem & Interarrival Times

.
Theorem (Time Rescaling Theorem)
..

.

. ..

.

.

Let 0 < u1 < · · · < un < T be a realization from a point process with
conditional intensity function λ(t), satisfying 0 < λ(t) for all t ∈ (0,T ].
Define the transformation

Λ(uk) =

∫ uk

0

λ(u) du,

for k = 1, . . . , n, and if Λ(t) < ∞ almost surely for t ∈ (0,T ], then the
sequence Λ(u1), . . . ,Λ(un) are a Homogeneous Poisson process with unit
rate.

.
Theorem (Interarrival Times of Homogeneous Poisson Processes)
..

.

. ..

.

.

For a homogeneous Poisson counting process with intensity λ, the
interarrival times (the time interval between two occurrences of the
underlying point process) t1, t2, . . . , tn are independent and identically
distributed with the common distribution being exponential with
parameter λ.
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.. Encoding : Estimating Intensity Function

Four Step Process of Estimating Λθ(t) =
∫ t

0
λθ(σ)dσ

...1 Find the spike time for the constituent cells of the pooled set

...2 Find the Nt , the cumulative sum of spikes from the starting time
(t = 0) up until time t

...3 Find the mean, E [Nt ], over all the simulations for a given input θ

...4 Smooth-out E [Nt ] using a smoothing spline or any other kernel
smoothing method.

This approach is efficient than the usual binning and spike rate
calculation for estimating the intensity function λθ(t).

We can use the spike rescaling theorem, interarrival time property
along with the Kolmogorov–Smirnov test to verify indeed that the
Poisson process model is valid.
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.. Sample Intensity Functions: An Example

Spike pattern of one cell

Some sample paths with 10 cells pooled together

Mean activity pattern of the activity patterns above
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.. Intensity Functions: Comparing Speeds

For comparing speeds, we need to assume a structure for the
intensity process:

λθ,s(t) = λ0 + λ(t)

The constant part λ0 models the background activity.(Iyengar &
Liao, 1997)

λ0 can be estimated using the portion of response before and after
the input is incident on the patch

The time dependent part λ(t) models the input dependent
component

Λ(t) =

∫ t

0

λ(σ)dσ =

∫ t

0

λθ,s(σ)dσ − λ0t

Λ(t) functions are rescaled in time and normalized in amplitude

Mervyn P. B. Ekanayake Motion Encoding and Decoding in the Retina



.. Intensity Functions: Comparing Speeds

Intensity function and background
activity (normalized)

Signal dependent intensity
(normalized)
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.. Results: Comparing Speeds

The normalized L2 distance between the intensity functions after linearly

rescaling the time to a standard [0, 1] time interval
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.. Intensity Functions: Direction Experiment

The responses obtained for Angles 0◦ to 358◦are repeated over from −360◦ to −2◦,

so that this graph compares the distance between the intensity functions of angles

−360◦ to 358◦.
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.. Likelihood function and Hypothesis Testing

The intensity functions suggest that the intensity functions are
“considerably” different

Likelihood Function for a Observed Poisson Process using Binning

Suppose the observation interval [0,T ) is partitioned in to a set of
k disjoint intervals (called bins), [0, t1), [t1, t2), . . . , [tk−1,T ).

Let ni be the number of spikes observed during the ith subinterval.

Then the log-likelihood function can be easily found to be

lθ(R) = −
∫ T

t0

λθ(σ)dσ +
k∑

i=1

ni ln

(∫ ti

ti−1

λθ(σ)dσ

)

This can be applied for the hypothesis testing problem.
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.. Decision Space

All cells 2◦ separation All cells 10◦ separation

All cells 20◦ separation All cells 30◦ separation
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.. Results: Estimation Error in the Direction Experiment

Using 100 ms Estimation Window (Total simulation time 800 ms)

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

Input Angle / deg

R
M

S
 E

rr
or

 / 
de

g

 

 

A
B
ALL

Starting at 200 ms

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

Input Angle / deg
R

M
S

 E
rr

or
 / 

de
g

 

 

A
B
ALL

Starting at 300 ms

0 50 100 150 200 250 300 350
0

2

4

6

8

10

Input Angle / deg

R
M

S
 E

rr
or

 / 
de

g

 

 

A
B
ALL

Starting at 400 ms

0 50 100 150 200 250 300 350
0

1

2

3

4

5

Input Angle / deg

R
M

S
 E

rr
or

 / 
de

g

 

 

A
B
ALL

Starting at 500 ms

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

Input Angle / deg

R
M

S
 E

rr
or

 / 
de

g

 

 

A
B
ALL

Starting at 600 ms

Mervyn P. B. Ekanayake Motion Encoding and Decoding in the Retina



.. Results: Estimation Error in the Direction Experiment

Using 20 ms Estimation Window (Total simulation time 800 ms)
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.. Results Summary & Conclusions

...1 With only 3 principal directional sensitivities, the directional
sensitive B-Cells of the retina can encode full 360◦ of motions.

...2 Directional sensitive cells can estimate direction information using a
very short time interval compared to the non-directional sensitive
cells.

...3 When the time interval is increased, non-direction sensitive cells
improve in their detectability, but this is limited by the fact that
their population is less than direction sensitive cells.

...4 Retinal responses at different speeds cam be modeled as time and
amplitude rescaling of the time varying part of the response
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.. Future Work

The results obtained here clearly demonstrates the motion encoding
properties of the retina

Goal is to develop a filter design which can recursively estimate the
trajectory of a light input on the retina

Possible strategies include nonlinear Kalman filters, estimation
methods for doubly stochastic Poisson processes, etc.
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