
Target Motion Discrimination with Model Retina and Cortex

by

Maha A. P. Neshadha Perera, B.S.

A Thesis

in

Mathematics

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Fulfillment of

the Requirements for the Degree of

Master of Science

Approved

Dr. Bijoy K. Ghosh

Chair of Committee

Dr. Clyde F. Martin

Peggy Gordon Miller

Interim Dean of the Graduate School

August, 2011



c©2011, Maha A. P. Neshadha Perera



Texas Tech University, Maha. A. P. Neshadha Perera, August 2011

ACKNOWLEDGMENTS

First and foremost, I would like to express my heartfelt gratitude to my advisor

Dr. Bijoy K. Ghosh for his invaluable guidance and support, both academically and

morally given to me while I was working on this project. Without the knowledge,

encouragement, and fatherly advice given by you, this project could have been much

more difficult and less productive.

I must also thank my thesis committee member Dr. Clyde F. Martin for the

support given even with his busy schedule. Your presence in my thesis committee,

and your corporation is highly appreciated.

If I don’t mention the support given by my colleague Mervyn Parakrama Ekanayaka

for completing this thesis, it would be an extremely ungrateful thing. Being a fellow

researcher in my research group and a good friend, his valuable support made my life

much easier. I would like to thank Mervyn from the bottom of my heart.

Another big chunk of my thanks goes to my loving wife Kalpana who took care

of me tirelessly while I am working on this research project.

Last but not least, I would like to thank everyone else who supported me during

my stay in Texas Tech University in various instances. Even though I could not name

everyone individually, I would like to express my heartfelt gratitude to all of you.

ii



Texas Tech University, Maha. A. P. Neshadha Perera, August 2011

CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. BIOLOGY OF THE TURTLE VISUAL SYSTEM . . . . . . . . . . . . 2

2.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The Retina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Visual Cortex & LGN . . . . . . . . . . . . . . . . . . . . . . . 5

III. THE SIMULATION MODEL . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 GENESIS Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Connection Strength . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Visual Cortex Noise Level . . . . . . . . . . . . . . . . . . . . 14

IV. SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . 16

V. MOTION TARGET DISCRIMINATION . . . . . . . . . . . . . . . . . 29

5.1 Low Pass Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Two-Stage Principal Component Analysis . . . . . . . . . . . . 29

5.3 Encoding with Mean β-strands . . . . . . . . . . . . . . . . . 32

5.4 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . 48

VI. RESULTS AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . 62

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iii



Texas Tech University, Maha. A. P. Neshadha Perera, August 2011

ABSTRACT

A model of a turtle’s visual cortex has been developed and successfully used

to discriminate different input stimuli to different locations of its lateral geniculate

nucleus. The turtle’s retina model also shows the capability of discriminating motion

targets which verifies the biological experimental results. However, the two models

are studied separately and have been driven by different input stimuli in the past.

Here, in this thesis we will be combining the two models and let the output of the

retinal model drive the visual cortex model. We will be paying attention to the model

parameters such as the connection strength between the two previous models and the

white noise levels during this experiment.
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CHAPTER I

INTRODUCTION

The visual system of freshwater turtles consist of three major components which

have been studied in detail. The turtle retina on which an image is formed within

an eye has been studied and a detailed model was derived. The visual cortex, which

is a part of the turtle’s brain where the optical nerve connects also has been studied

and a detailed model was derived. Both models have shown promising results when

working alone for simulated data.

In this thesis, an attempt has made to combine the two models through a simple

model of Lateral Geniculate Nucleus (LGN). The simulation of motion targets of

different angles was performed with the combined model.

This thesis consists of the following chapters which describe the biological model

of the turtle’s visual system, simulation model of the turtle’s visual system and sim-

ulation parameters.

The first chapter, Biology of the Turtle Visual System describes the each major

component of interest in the Turtle’s visual system. The retina, which is a part of the

Turtle’s eye, the Visual cortex which is a part of the Turtle’ brain and the Lateral

Geniculate Complex (LGN) which connects the retina to the Turtle’s Visual cortex

is described in this chapter.

The next chapter describes the model used to simulate the Turtle visual system

which contains GENESIS models of retina and Visual cortex, and the linear model

of LGN. This chapter also describes the parameters of the model which has been

tweaked during the simulation study to determine the characteristics of the complete

model.

The final chapter describes the simulation results and the interpretations of the

results observed. It also describes methods which can be used to discriminate the

motions targets using the Visual Cortex activities.
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CHAPTER II

BIOLOGY OF THE TURTLE VISUAL SYSTEM

Here we analyze the visual system of freshwater turtles. The freshwater turtle

visual system is similar to that of most vertebrates. In fact, all vertebrate retina share

a similar structure (See [2] and [14]). Therefore, a turtle being a vertebrate can be

used to study the vertebrate visual system. Furthermore, the structure of the turtle

visual system has been extensively studied and detailed models were developed and

successfully tested at the Center for Bio Cybernetics and Intelligent Systems at Texas

tech University and various other research centers and laboratories around the world.

A general discussion of the cerebral cortex of reptiles,including turtles is provided

in [18] , and a detailed discussion of the visual pathways in turtles is provided in [19].

Nenadic et al. in [9] provides a large scale model of the visual cortex.

Neuronal activities in the turtle’s visual system have been studied using different

methods. Some of these methods are, recording from external surface of the brain

using multi-electrode arrays [11], [12], imaging the external surface of the cortex with

voltage-sensitive dyes, [13] and imaging the ependymal surface of the cortex with

voltage-sensitive dyes [15], [16], [17] and [10].

The following figure (Figure 2.1) shows the complete visual system of a freshwater

turtle. The turtle’s eyes, brain and optical nerve can be seen clearly in this picture.

CTX: cortex, OT: optic tectum and CB: cerebellum are also shown in the figure.

2
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Figure 2.1: Complete Turtle Visual System Picture courtesy of David M. Senseman,
University of Texas at San Antonio, San Antonio, TX

2.1 Neurons

The building block of any vertebrate visual system is a neuron. Neurons are

elongated cells which make up the central nervous system and they carry messages

by means of electrical signals.

The figure 2.2 below shows a typical neuron consists of dendrites, a cell body

known as soma and an axon. The cell body contains the nucleus and controls the

metabolic activities of the cell. The axon is the nerve fiber which transmits the

impulses away from the cell body. The myelin sheath acts as an insulator and allow

neurons to transmit the impulses faster. These axons end as swellings known as

synaptic terminals. When exited, neurotransmitters are released from these synaptic

terminals into the synapse which is the gap between a synaptic terminal of one cell

and the dendrite of the adjacent cell. The dendrites act as signal receptors from the

axon terminals of other neurons.

3
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Figure 2.2: Structure of a typical neuron Copylefted image attributed to Quasar Jarosz
at en.wikipedia.

The potential of the cell membrane of each neuron is measured as the activity

level of that particular neuron. The membrane potential level creates spikes when it

exceeds a certain threshold level and these spikes causes a neural signal to be passed

from one neuron to the other by releasing neurotransmitters at synaptic terminals.

2.2 The Retina

All vertebrate retina share a similar structure (See [2] and [14]). It consist of

layers of cells which are located inside the eye. The image of what eye sees is formed

on the retina. The cells in the retina are specialized to encode visual information

efficiently.

4
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Pupil

(a) Vertebrate Eye (b) Vertebrate Retina

Figure 2.3: Vertebrate eyes and retina. (a) Cross section of the eye of an verte-
brate Copyright: public domain - credit to NIH National Eye Institute. (b) Layered
structure of the vertebrate retina Copyright: public domain - copyright expired.

Light travels through the transparent ganglion cell layers and fall on the rods

and cone cells. The rod and cone cells are sensitive to light and get excited when light

falls on them. The signals generated by these rods and cones are then transfered to

the retinal ganglion cells which makes the optical nerve and travels towards deeper

structures of the brain.

There are two basic types of ganglion cells which we are interested in the turtle’s

retina known as A-cells and B-cells. They are classified based on their directional

sensitivity.

2.3 Visual Cortex & LGN

The Lateral Geniculate Nucleus (LGN) connects the optic nerve coming from

the retina into the visual cortex in the brain. The visual cortex is located in the brain

and it plays a major role in decoding the signals coming from the retina.

Turtle’s visual cortex and Lateral Geniculate Nucleus (LGN) are shown in figure

2.4 below. The figure shows the following components:

A : Dorsal view of a turtle brain. The oval-shaped area represents the visual cortex,

5
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which corresponds to the dorsal area, D. OB, olfactory bulb; CTX, cortex; OT,

optic tectum; CB, cerebellum.

B : Coronal section through the cerebral cortex at the level indicated in A. ADVR,

anterior dorsal ventricular ridge; STR, striatum; DM , medial part of D; DL,

lateral part of D.

C : Detailed view of visual cortex showing a medial and lateral pyramidal cell

Figure 2.4: Turtle Visual Cortex. Courtesy of the Ulinski lab at the University of
Chicago.

6
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CHAPTER III

THE SIMULATION MODEL

The retina and visual cortex models developed at the Center for Bio Informatics

& Cybernetics were using Hodgkin-Huxley model [5] to simulate neurons in these

models.

However, the portion of the retinal consist of photo receptor cell layers was

simulated using Matlab as a series of filters (See [4] for more details). Excitatory

and inhibitory conductance responses were generated for each motion path simulated

and used for simulating the retina model consists of retinal ganglion cells using the

GENESIS neural simulator. The ganglion cells of the retina are connected to the

visual cortex cells via a linear LGN structure.

3.1 GENESIS Model

Only a central patch of the actual turtle’s retina was modeled using the GENESIS

neural simulator. The cell distribution of the complete retina is illustrated in the figure

3.1.

7
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Figure 3.1: Cell distribution of the retina and the selected retinal patch

Cell distribution of the retina and the selected retinal patch. Picture courtesy of

Mervyn P. B. Ekanayaka, Center for Bio Cybernetics & Intelligent Systems at

Texas Tech University, Lubbock, TX

The white circle in the center shows the patch of the retina used in this simulation.

Even though the actual retina contains nearly 400,000 cells, the selected retinal patch

has only 520 cells. The only reason for selecting a smaller patch instead of the

complete retina is the limitation of computational power.

There are two main categories of retinal cells simulated in this study. They are

called A-cells and B-cells. A Cells are direction insensitive while B cells are direction

sensitive. A cells can be further classified as A ON cells and A OFF cells and B cells

can be classified as B1, B2 and B3 cells based on their direction sensitivity [1] . The

figure 3.2 shows the distribution of these cells within the selected retinal patch.
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Figure 3.2: Ganglion cell distribution of the selected retinal patch

The large scale model of the visual cortex used in this simulation is based on

the biological model described in [18] and [19]. This model has been developed into

a computer model in [7], [8] and [9]. There are four major types of neurons in the

visual cortex which we are interested in modeling. They are lateral pyramidal cells,

medial pyramidal cells, stellate cells and horizontal cells. Each of these cell types and

their corresponding connections with other cells are illustrated in figure 3.3
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Figure 3.3: Types of neurons in visual cortex

The cell distribution within the visual cortex as described in [7], [8] and [9] is

shown in figure 3.4. A linear LGN with 200 cells is also shown in black at the bottom

right corner in this figure.
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Figure 3.4: Cell distribution of the Visual Cortex

The linear arrangement of Lateral Geniculate Neurons are shown in figure 3.5.

Only 13 such neurons are shown here for the clarity of the figure. However, in the

actual simulation model, there are 200 geniculate neurons present.
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Figure 3.5: Linear arrangement of geniculate neurons

The two models were connected using a linear topology. The ganglion cells in

the retinal model are grouped into 200 groups uniformly based on their x-coordinate.

Each ganglion cell in the first group was connected to the first LGN cell using

synapses, second group was connected to the second LGN cell and this pattern con-

tinued until all ganglion cells were connected into the LGN cells.

However, when creating the synapses, a synaptic delay was introduced based on

the distance to each ganglion cell from the x-axis. Ganglion cells lie on x-axis connects

to the LGN with zero delay while ganglion cells lies farthest away from x-axis connects

to the LGN with the highest delay. The connection topology is illustrated in figure

3.6
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Visual CortexRetina

LGN

Synaptic Connections

Figure 3.6: Retina and visual cortex combined model

3.2 Connection Strength

The connection strength between retinal model and the visual cortex model was

found using a series of simulations run with connection strengths ranging from 0.1

to 10. The optimum connection strength was selected by visually observing the

movies obtained from the visual cortex activity levels recorded in each simulation.

A Connection strength of 1.0 was finally selected as the best connection strength for

this particular series of simulations.

However, when the models were connected using any significant connection strengths

from the beginning of the simulation time, i.e t = 0ms, a uniform activity pattern in

the visual cortex was observed regardless of the input stimuli to the retinal model as

shown in the figure 3.7a. The retinal model takes some time to stabilize and until

then it produce random spikes causing the behavior observed.

As a remedy to this problem, the connection strength was dynamically changed

during the simulation. Here the simulation was started with connection strength of 0

and it was changed to the desired connection strength of 1.0 after 100ms of simulation

elapsed.

13
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(b) With Dynamic Connection Weights

Figure 3.7: Cortical response movie with no input signal to retina

3.3 Visual Cortex Noise Level

For the purpose of statistical analysis, a Gaussian white noise was added to

the visual cortex ganglion cells. Four different levels of white noise was tested (See

figure 3.8) and finally white noise from a Gaussian distribution with µ = 0V and

σ2 = 3.0 × 10−10V 2 was selected (See figure 3.8c) in this simulation. Since the

simulation was repeated 60 times per each motion target, this white noise allows us

to analyze the data with statistical methods described in [3] and [8]
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(a) µ = 0 V and σ2 = 3.0× 10−12 V 2
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(b) µ = 0 V and σ2 = 3.0× 10−11 V 2
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(c) µ = 0 V and σ2 = 3.0× 10−10 V 2
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(d) µ = 0 V and σ2 = 3.0× 10−9 V 2

Figure 3.8: Cortical response movies for different white noise levels
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CHAPTER IV

SIMULATION RESULTS

The Visual Cortex action potentials or the cortical responses were recorded

for each neuron in the visual cortex for 1500ms time interval. Simulation was re-

peated 60 times per one motion path and total of twelve motion paths corresponds

to 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦ and 330◦ were used in this

simulation as shown in figure 4.1.

Figure 4.1: Different motion targets used in the simulation

The resulting cortical responses can be displayed as a movie showing colored

map of the visual cortex changing with simulation time. Following figures shows

selected set of fifteen frames from each simulation movie. The first simulation from

each motion path was selected to generate movies.
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Figure 4.2: Cortical Response Movie frames for motion path corresponds to 0◦
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Figure 4.3: Cortical Response Movie frames for motion path corresponds to 30◦
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Figure 4.4: Cortical Response Movie frames for motion path corresponds to 60◦
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Figure 4.5: Cortical Response Movie frames for motion path corresponds to 90◦
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Figure 4.6: Cortical Response Movie frames for motion path corresponds to 120◦
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Figure 4.7: Cortical Response Movie frames for motion path corresponds to 150◦
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Figure 4.8: Cortical Response Movie frames for motion path corresponds to 180◦
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Figure 4.9: Cortical Response Movie frames for motion path corresponds to 210◦
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Figure 4.10: Cortical Response Movie frames for motion path corresponds to 240◦
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Figure 4.11: Cortical Response Movie frames for motion path corresponds to 270◦
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Figure 4.12: Cortical Response Movie frames for motion path corresponds to 300◦
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Figure 4.13: Cortical Response Movie frames for motion path corresponds to 330◦
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CHAPTER V

MOTION TARGET DISCRIMINATION

5.1 Low Pass Filtering

5.2 Two-Stage Principal Component Analysis

Principal component analysis is primarily used to reduce the dimensionality of

the data while retaining as much information as encoded in the original data set. This

is done by transforming the observed data into a new set of uncorrelated variables

[6]. Even though the original Karhunen-Loeve transformation is used for continuous

variables [6], we will be using a discretized variant of this original Karhunen-Loeve

transformation [8], [3].

The response waves in the visual cortex can be considered as a movie consisting

a sequence of frames, each showing the visual cortex activity level in points in the

visual cortex. The information encoded in these waves can be encoded by a two-step

Karhunen-Loeve (KL) decomposition as described on Nenadic et al. [8] and Du et al.

[3]

In this analysis, a two-step KL-decomposition was used with a sliding encoding

window was used to analyze the segments of cortical responses. As shown in figure 5.1,

the time axis was covered by equal length, overlapping windows. The two-step KL-

decomposition was applied to the segment of the spike rate signal within each window.

The length of the sliding window remains constant while the starting and ending

position of the window changes with time. As shown in [3], each segment of the

cortical response is mapped to a point in the B-space.

Figure 5.1: Sliding Encoding Window Technique
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For a given motion target for the retina, let I(t, n), 0 ≤ t ≤ T, 1 ≤ n ≤ N be the

smoothed spike rate of the cell as a spatio-temporal response signal where t is the

time and n is the index of the pyramidal neuron in the visual cortex.

I(t, n) can be taken as a matrix whose tth row represents the spike rate of each

neuron at time t for the given motion target in the retina and each column represents

the nth pyramidal neuron in the visual cortex.

Let the length of each time window be w and let I(t, n), t1 + 1 ≤ t ≤ t1 +

w, t1 = 0, a, 2a, ... be the response signals for different time windows. Here a is the

amount of time that the encoding window slide (See figure 5.1).

Let M denote the the total number of cortical response movies in response to each

motion target with motion angle θ = 0◦, 30◦, 60◦, ..., 330◦. For the kth, k = 1, 2, ...M

movie,the spatio-temporal signal in this time window can be considered as a collection

of vectors {Ik(t1+1), Ik(t1+2), ..., Ik(t1+w), } where Ik(t1+ i) ∈ R1×N , i = 1, 2, ..., w

The two-step KL-decomposition reduces the dimensionality of the cortical re-

sponse into A-space and B-space respectively. First, let’s consider the KL-transform

into A-space.

The covariance matrix C1 ∈ RN×N for M movies is calculated as,

C1 =
1

Mw

M∑
k=1

w∑
i=1

(Ik(t1 + i))T (Ik(t1 + i)) (5.1)

where (Ik(t1 + i))T is the transpose of Ik(t1 + i).

The matrix C1 is symmetric and positive semi-definite and its eigenvalues are all

real and non-negative. The corresponding eigenvectors forms an orthonormal basis

in RN . The eigenvectors corresponds to the largest p eigenvalues of C1 are called

the principal eigenvectors or modes. The pth order successive reconstruction of the

spatio-temporal signal Ik(t) ∈ R1×N is given by

Îk(t1 + i) =

p∑
j=1

αk
j (t1 + i)φT

j , i = 1, 2, ..., w (5.2)

where φj ∈ RN×1 is the jth principal eigenvector. The time coefficients αk
j (t1 + i) are

given by αk
j (t1 + i) = 〈Ik(t1 + i), φT

j 〉
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The coefficients αk
j (t1 + i) of the KL-decomposition are uncorrelated in terms of

j and we call αk
j (t), t1+1 ≤ t ≤ t1+w, 1 ≤ j ≤ p the pth order A-space representation

of the movie segment within the corresponding time window for the kth movie.

The vector function 5.3 can be viewed as a sample function of a vector random

process [3].

[αk
1(t), α

k
2(t), ..., α

k
p(t)], t1 + 1 ≤ t ≤ t1 + w (5.3)

Now, let

γkj =


αk
j (t1 + 1)

αk
j (t1 + 2)

...

αk
j (t1 + w)

 , (ξk)T =


γk1

γk2
...

γkp

 , where, j = 1, 2, ..., p (5.4)

Calculating the covariance matrix as in equation 5.1,

C2 =
1

M

M∑
k=1

(ξk)T (ξk) (5.5)

and the qth order successive approximation of the kth vector ξk is given by

ξ̂k =

q∑
j=1

βk
j ψ

T
j (5.6)

where ψj, j = 1, 2, · · · , q are the eigenvectors corresponding to the largest q eigenval-

ues of the matrix C2. The coefficients βk
j are found by orthogonal projection of ξk

onto the jth eigenvector βk
j = 〈ξk, ψT

j 〉.
The βk

j (t), t1 + 1 ≤ t ≤ t1 + w, 1 ≤ j ≤ p is the pth order B-space representation

of the movie segment within the corresponding time window for the kth movie.

Few β components capture the most information found in the original movie as

per [3]. Therefore, in this simulation, only the first six β components were calcu-

lated. By repeating the above process for all sliding encoding windows for the total

simulation time, a movie produces a β-strand as a vector-valued function of time.
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5.3 Encoding with Mean β-strands

Figures 5.2a shows all β-strands calculated in this simulation. The figure 5.2b

shows the mean β-strand of all twelve angles used in this simulation. The mean β-

strand was calculated by calculating the statistical mean of of each β component for

a given sliding encoding window over all repetitions of a given motion target.

(a) β-strands for all motion targets
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(b) Mean β-strands for all motion targets

Figure 5.2: β-strands and Mean β-strands for all motion targets, 0-1500ms
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A more clear separation of β-strands can be seen in the figure 5.3 below and it

shows the same β-strands and mean β-strands for sliding encoding windows up to

800ms of simulation time. Also, figures 5.4 - 5.15 shows β-strands and mean β-strands

corresponds to three distinct motion targets per figure for sliding encoding windows

up to 800ms of simulation time.
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(b) Mean β-strands for all motion targets

Figure 5.3: β-strands and Mean β-strands for all motion targets, 0-800ms
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(a) β-strands for motion targets 0◦, 30◦ and 60◦
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Figure 5.4: β-strands and Mean β-strands for motion targets 0◦, 30◦ and 60◦, 0-800ms
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(a) β-strands for motion targets 30◦, 60◦ and 90◦
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Figure 5.5: β-strands and Mean β-strands for motion targets 30◦, 60◦ and 90◦, 0-
800ms
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(a) β-strands for motion targets 60◦, 90◦ and 120◦
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Figure 5.6: β-strands and Mean β-strands for motion targets 60◦, 90◦ and 120◦, 0-
800ms
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Figure 5.7: β-strands and Mean β-strands for motion targets 90◦, 120◦ and 150◦,
0-800ms
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(a) β-strands for motion targets 120◦, 150◦ and 180◦
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Figure 5.8: β-strands and Mean β-strands for motion targets 120◦, 150◦ and 180◦,
0-800ms
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(a) β-strands for motion targets 150◦, 180◦ and 210◦
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Figure 5.9: β-strands and Mean β-strands for motion targets 150◦, 180◦ and 210◦,
0-800ms

39



Texas Tech University, Maha. A. P. Neshadha Perera, August 2011

0

5

10

15

0

0.5

1

 

β
1

β
2

180o

210o

240o

(a) β-strands for motion targets 180◦, 210◦ and 240◦
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Figure 5.10: β-strands and Mean β-strands for motion targets 180◦, 210◦ and 240◦,
0-800ms
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(a) β-strands for motion targets 210◦, 240◦ and 270◦
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Figure 5.11: β-strands and Mean β-strands for motion targets 210◦, 240◦ and 270◦,
0-800ms
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(a) β-strands for motion targets 240◦, 270◦ and 300◦
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Figure 5.12: β-strands and Mean β-strands for motion targets 240◦, 270◦ and 300◦,
0-800ms

42



Texas Tech University, Maha. A. P. Neshadha Perera, August 2011

0
2

4
6

8
10

12
14

0

0.5

 

β
1

β
2

270o

300o

330o

(a) β-strands for motion targets 270◦, 300◦ and 330◦

0

2

4

6

8

10

12

14

0
0.2

0.4
0.6

 

β
1β

2

270o

300o

330o

(b) Mean β-strands for motion targets 270◦, 300◦ and 330◦

Figure 5.13: β-strands and Mean β-strands for motion targets 270◦, 300◦ and 330◦,
0-800ms
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(a) β-strands for motion targets 300◦, 330◦ and 0◦

0

2

4

6

8

10

12

14

0
0.2

0.4
0.6

0.8

 

β
1

β
2

300o

330o

0o

(b) Mean β-strands for motion targets 300◦, 330◦ and 0◦

Figure 5.14: β-strands and Mean β-strands for motion targets 300◦, 330◦ and 0◦,
0-800ms
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(a) β-strands for motion targets 330◦, 0◦ and 30◦
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Figure 5.15: β-strands and Mean β-strands for motion targets 330◦, 0◦ and 30◦, 0-
800ms

The mean β-strands for each input stimuli corresponds to each motion target

is denoted by s0◦(t), s30◦(t), s60◦(t), · · · , s330◦(t) respectively. Let r(t) denote the β-
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strand of an arbitrary cortical movie in response to a input stimulus from an unknown

motion path. We can denote the start and end times of a detection window as T1

and T2 respectively. Then, T = T2 − T1 gives the size of our detection window. The

distance between two β-strands can be calculated as

dθ1θ2 =

T2∑
t=T1

q∑
k=1

(
skθ1(t)− skθ2(t)

)2
, θ1, θ2 = 0◦, 30◦, 60◦, · · · , 330◦ (5.7)

where k is the index of the component of sθ(t), θ = 0◦, 30◦, 60◦, · · · , 330◦.
The figure 5.16a shows this distance for all possible input stimuli for the entire

simulation time. Figure 5.16b shows the same distance up to ending time T2 = 800ms.

All these distances can be seen reaching their maximum in the interval 400ms - 700ms.

Most of these distances reach their maximum at 490ms and 650ms. Even though

the distance seems increasing again after 1000ms, a clear pattern cannot be seen.

Therefore, figure 5.16b shows that the detection is more accurate around 490ms and

560ms.
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(a) For all ending times

(b) For ending time ≤ 800ms

Figure 5.16: Distance between mean β-strands vs ending time T2
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5.4 Hypothesis Testing

With the white noise present in the simulation of the visual cortex model, a

hypothesis testing problem can be formulated as discussed in [3]. We can extend

and generalize our discussion of hypothesis testing from three inputs shown in [3] to

twelve inputs corresponds to twelve motion paths used in this simulation and further

in to any number of input stimuli.

Let the twelve input stimuli corresponds to each motion path angle associate with

twelve hypotheses. Hθ, θ = 0◦, 30◦, 60◦, · · · , 330◦ where Hθ denotes the hypothesis

that the stimulus is from the motion target corresponds to motion angle θ◦. Therefore,

we can write

r(t) = sθ(t) + n(t), θ = 0◦, 30◦, 60◦, · · · , 330◦ (5.8)

where n(t) is the vector values noise process contained in the β-strand with mean 0.

The hypothesis testing used in this simulation was based on calculating condi-

tional probability densities and selecting a decision criterion (See [3] and [20]). Here

we use the Neyman-Pearson criteria as the decision criteria. Hypotheses are governed

by probability assignments Pj, j = 1, 2, 3, ... where hypothesis Hθ1 occurs with prob-

ability P1, hypothesis Hθ2 occurs with probability P2, hypothesis Hθ3 occurs with

probability P3, and so on.

By assigning the cost of correct detection to be zero and the cost of wrong

detection to be one, from [20] the logarithm likelihood ratio is calculated as,

lnΛ1 (r(t)) =
pr|Hθ2

(R|Hθ2)

pr|Hθ1
(R|Hθ1)

(5.9)

lnΛ2 (r(t)) =
pr|Hθ3

(R|Hθ3)

pr|Hθ1
(R|Hθ1)

(5.10)

lnΛ3 (r(t)) =
pr|Hθ4

(R|Hθ4)

pr|Hθ1
(R|Hθ1)

(5.11)

and so on. Here, R is the vth order representation of r(t) and it can be written as the

vector R = [r1, r2, · · · , rv]. The decision regions in the decision space are determined

by the the threshold comparisons,
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Figure 5.17: Decision Space divided into three detection regions

In figure 5.17, if Pθ1 = Pθ2 = Pθ3 =
1

3
, the dividing line between regions Hθ1

and Hθ2 will be the negative x-axis and the dividing region between Hθ2 and Hθ3 will
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be the y = x, x ≥ 0 line and the dividing line between Hθ3 and Hθ1 will be negative

y-axis. In this case we assume that the Pθ1 = Pθ2 = Pθ3 =
1

3
.
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Figure 5.18: Decision space for motion targets 0◦, 30◦ and 60◦, 300-1100ms
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Figure 5.19: Decision space for motion targets 30◦, 60◦ and 90◦, 300-1100ms
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Figure 5.20: Decision space for motion targets 60◦, 90◦ and 120◦, 300-1100ms
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Figure 5.21: Decision space for motion targets 90◦, 120◦ and 150◦, 300-1100ms
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Figure 5.22: Decision space for motion targets 120◦, 150◦ and 180◦, 300-1100ms
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Figure 5.23: Decision space for motion targets 150◦, 180◦ and 210◦, 300-1100ms

55



Texas Tech University, Maha. A. P. Neshadha Perera, August 2011

−500 0 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

(a) 300ms - 399ms

−500 0 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

(b) 400ms - 499ms

−500 0 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

(c) 500ms - 599ms

−800 −600 −400 −200 0 200 400 600 800
−800

−600

−400

−200

0

200

400

600

(d) 600ms - 699ms

−500 0 500
−800

−600

−400

−200

0

200

400

600

(e) 700ms - 799ms

−500 0 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

(f) 800ms - 899ms

−600 −400 −200 0 200 400 600
−800

−600

−400

−200

0

200

400

600

(g) 900ms - 999ms

−500 0 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

(h) 1000ms - 1099ms

−500 0 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

(i) 1100ms - 1199ms

Figure 5.24: Decision space for motion targets 180◦, 210◦ and 240◦, 300-1100ms
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Figure 5.25: Decision space for motion targets 210◦, 240◦ and 270◦, 300-1100ms
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Figure 5.26: Decision space for motion targets 240◦, 270◦ and 300◦, 300-1100ms
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Figure 5.27: Decision space for motion targets 270◦, 300◦ and 330◦, 300-1100ms
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Figure 5.28: Decision space for motion targets 300◦, 330◦ and 0◦, 300-1100ms
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Figure 5.29: Decision space for motion targets 330◦, 0◦ and 30◦, 300-1100ms
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CHAPTER VI

RESULTS AND CONCLUSION

Turtle’s visual cortex model has shown that it can be used to discriminate stim-

uli given to it successfully. Also, the retina model has been used successfully to

discriminate motion targets and even different motion speeds. In this thesis, we have

combined the retinal model and the visual cortex model and the retinal model was

used to provide stimuli to the visual cortex model in real time. It was discovered that

the combined model of retina and visual cortex can be used to discriminate visual

targets successfully.

Another important observation made in this experiment was that the two models

should be connected dynamically with connection weights adjusting after the models

get stabilized. If the two models connects from the beginning with full connection

strength, the expected results could not obtain and the model shows visual cortex

activities even without any input stimuli to the retina depending on the connection

strength between the retina and the visual corex.

The white noise level plays a key role in statistical analysis, specially in hypothesis

testing. If there is no significant white noise in the model, the hypothesis testing

fails. It there is too much white noise, the model tend to fire neurons prematurely

and expected results cannot be obtained.
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