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Abstract

In this chapter we describe how a population of neurons model the dynamic activity of a suitable

region of the visual cortex, responding to a class of visual inputs. Specifically, a large scale neuronal

model has been described which generates a propagating wave of activity that has been independently

recorded in experiments using multiple electrodes and voltage sensitive dyes. We show how the model

cortex is able to discriminate location of target in the visual space. The discrimination is carried out

using two separate algorithms. The first method utilizes statistical detection wherein the activity waves

generated by the visual cortex are encoded using principal components analysis. The representation is

carried out, first in the spatial domain and subsequently in the temporal domain over a sequence of

sliding windows. Using the model cortex, we show that the representation of the activity waves, viewed

as a ‘beta strand’, is sufficiently different from each other for alternative locations of point targets in the

visual space. Discrimination is carried out assuming that the noise is additive and Gaussian. In the second

method, the beta strands are discriminated using a nonlinear dynamical system with multiple regions

of attraction. Each beta strand corresponds to a suitable initialization of the dynamical system and the

states of attraction correspond to various target locations. The chapter concludes with a discussion of

the motor control problem and how the cortical waves play a leading role in actuating movements that

would track a moving target with some level of evasive maneuvers.
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I. I NTRODUCTION

In this chapter our goal is to describe modeling and estimation problems that arise in the animal

visuomotor pathway. The pathway is particularly adept in tracking targets that are moving in

space, acquire and internally represent images of the target and finally actuate a suitable motor

action, such as capturing the target. In Fig. 1 we show the tracking maneuver of a freshwater

turtle as it strives to capture a moving fish. Turtles anticipate future position of a moving target

by solving a motion prediction problem – a task that is believed to be initiated in the visual

cortex. Visual inputs to the retina are routed through the geniculate before it hits the cortex (see

Fig. 2). The role of the visual pathway prior to the cortex is essentially filtering the visual signal

although the role of the cortex is ‘somewhat more involved’ which we presently describe.

Mammals have a cerebral cortex that embodies several topographically organized represen-

tations of visual space. Extracellular recordings show that neurons in a restricted region of

visual cortex are activated when a visual stimulus is presented to a restricted region of the

visual space, the classical receptive field of the neuron [7]. Neurons at adjacent points in the

cortex are activated by stimuli presented at adjacent regions of the visual space. Consequently,

there is a continuous but deformed map of the coordinates of visual space to the coordinates

of the cortex. Extracellular recordings from the visual cortex of freshwater turtles produce a

different result [16]. Neurons at each cortical locus are activated by visual stimuli presented

at every point in the binocular visual space, although the latency and shape of the response

waveforms vary as the stimulus is presented at different loci in the visual space. This suggests

that there may not be a simple map of the coordinates of the visual space to the coordinates of

the visual cortex in turtles. Position in the visual space is perhaps represented in a form other

than a retinotopic map. Experiments conducted by Senseman and Robbins [27], [29], [30] have

supported this viewpoint. They used voltage sensitive dye methods to show that presentation of a

visual stimulus to the retina of anin vitro preparation of the turtle eye and brain produces a wave

of depolarization that propagates anisotropically across the cortex (see Fig. 3 for a visualization

of the wave propagation in a model cortex). These waves have been demonstrated using both

multielectrode arrays and voltage sensitive dyes [23], [24], [28]. Both methods detect the activity

of populations of pyramidal cells [28]. The waves have been analyzed using a variant of the

principal components method, known as Karhunen-Loeve decomposition. Individual waves could
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be represented as a weighted sum of as few as three eigenvectors which are functions of the

coordinates of the cortex. Interestingly, presentation of different visual stimuli, such as spots of

light at different points in the visual space, produce waves that have different representations

in the three dimensional eigenspace. This raises the possibility that visual information is coded

in the spatiotemporal dynamics of the cortical waves. Subsequent research work has provided

abundant evidence that the traveling electrical waves are observed not only in turtle visual cortex

[24], but also across olfactory, visual and visuomotor areas of cortex in a variety of species [10].

Propagating waves with comparable properties can be produced in a large scale model of

turtle visual cortex that contains geniculate and cortical neurons [9], [20], [21], [32]. The large

scale model, described in this chapter, contains geniculate neurons in the dorsal lateral geniculate

complex of the thalamus and the five major populations of neurons in the visual cortex (see Fig. 4

for a model cortex). Turtle visual cortex has three layers: an outer layer 1, an intermediate layer

2 and an inner layer 3 and is divided into lateral and medial parts. Pyramidal cells (including

lateral and medial pyramidal cells) have somata situated in layer 2 and are the source of efferent

projections from the cortex. The cortex also contains at least three populations of inhibitory

interneurons, the subpial (situated in the outer half of layer 1), the stellate (situated in the inner

half of layer 1) and the horizontal cells (situated in layer 3). Interactions between these five types

of cells involve two types of effects: excitatory and inhibitory. Both geniculate and pyramidal cells

are excitatory. Geniculate neurons project excitatory contacts onto pyramidal cells, subpial cells

and stellate cells. Pyramidal cells give rise to excitatory inputs to the inhibitory interneurons

as well as neighbor pyramidal cells. Subpial, stellate and horizontal cells are inhibitory and

provide inhibitory inputs to pyramidal cells. Subpial and stellate cells also involve recurrent

connections to neighbor cells. Fig. 5A shows the interconnections among the cortical neurons

in the large scale cortex model. The five types of cells can be thought of as forming two

anatomically defined pathways within the cortex (Fig. 5B). A feed-forward pathway (Fig. 5B,

left part) involves the geniculate inputs that make excitatory contacts on subpial, stellate and

lateral pyramidal cells. The subpial and stellate cells make inhibitory contacts on the lateral

pyramidal cells. Lateral pyramidal cells give rise to excitatory recurrent contacts on the other

lateral and medial pyramidal cells. A feedback pathway (Fig. 5B, right part) involves the recurrent

collateral of both lateral and medial pyramidal cells, which make excitatory contacts on subpial,

stellate and horizontal cells. Each of these populations of inhibitory interneurons make inhibitory
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contacts on pyramidal cells. In addition, there are inhibitory contacts between individual subpial

cells as well as between individual stellate cells. Both the lateral and medial pyramidal cells

give rise to efferent connections to the thalamus, striatum and brainstem.

The retino-cortical pathway has been sketched in Fig. 2. The retinal ganglion cells are densely

distributed around a horizontal axis called the ‘visual streak’. Thus turtle-vision has a greater

acuity across the horizontal axis (along the surface of water for a freely swimming turtle) in

comparison to the vertical axis (above and below the water surface). The retinal inputs are

redistributed ‘retinotopically’ on the lateral geniculate nucleus (LGN). The LGN receives feed-

forward inputs from the retina and feedback inputs from the cortex. The precise functional role

of the LGN is not entirely known and has not been detailed here. Visual input from the LGN

to the cortex is not retinotopic. In fact, inputs from the LGN are spatially distributed across the

cortex and the axons are shown as lines in Figs. 2, 4 and 6. These lines cross over, giving rise

to an intense activity at the rostro-lateral part of the cortex, sparking the generation of a wave.

The visuo-cortical complex is part of an overall visuomotor pathway, sketched in Fig. 7. Visual

input converges onto the optic tectum via two separate routes. A direct input from the retina is

fused with an input from the cortex at the tectum. The intermediate stages of the cortical input,

viz. the striatum, the SN and the PT are not relevant for this paper. The tectum is responsible

in predicting future locations of moving targets by processing cortical waves and fusing more

recent visual inputs from the retina. The animal is able to make prediction based on long term

visual data and correct the prediction based on ‘somewhat recent’ target location. The exact

mechanism of sensor fusion at the tectum is a subject of future research.

II. A M ULTI -NEURONAL MODEL OF THE VISUAL CORTEX

In this section, we give a description of the large scale model of the turtle visual cortex.

Modeling, in general, is an evolutionary process and involves numerous parameters, some of

which are obtained by physiological measurements and some of which are simply tuned in

the modeling process. For a comprehensive description of the computational model we would

like to refer to [21]. Briefly, the dimensions of the somata and dendrites of individual types

of neurons are based on measurements from Golgi impregnations of turtle visual cortex [4],

[5]. Biophysical parameters for each cell type are measured within vivo intracellular recording

methods [14], [15]. The physiology of each type of synapse included in the model is known
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from in vitro intracellular recording experiments [13]. The kinetics of individual types of voltage

gated channels have not been characterized with voltage clamp methods in turtle visual cortex.

So the parameters needed to implement Hodgkin-Huxley-like kinetic schemes are obtained from

work on mammalian cortex and constrained by comparing the firing patterns of model cells

to real cells following intracellular current injections. The geometry of the geniculocortical and

intracortical interconnections are known in detail [6], [17]. Moreover, there are some information

on the basic shape and dimensions of the axonal arbors of subpial, stellate and horizontal cells

from Golgi preparations. These data are used to estimate spheres of influence between subpial,

stellate and horizontal cells and their postsynaptic targets.

As noted in the introduction, the visual cortex of freshwater turtles contains three layers. Our

model assumes the three layers are projected onto a single plane (see Fig. 4). Each neuron is

represented by a multiple compartmental model with3-29 compartments based on its morphology

(see Fig. 8). Each compartment is modeled by a standard membrane equation and implemented

in GENESIS [3]. The membrane equation is written using a set of ordinary differential equations

described as follows:

dVi(t)

dt
= − 1

Ci

[
(Vi(t)− Er)

Ri

+
∑

j

(Vi(t)− Vj(t))

Rij

+
∑
ion

gk(Vi(t)− Ek) +
∑
syn

gk(Vi(t)− Ek) + Istim(t)

]
(1)

whereVi(t) is the time dependent membrane potential of theith compartment relative to the

resting membrane potential,Ci is the total membrane capacitance of theith compartment,Ri is

the total membrane resistance of theith compartment, andRij is the coupling resistance between

theith andjth compartments. Total resistances and capacitances are calculated from the geometry

of the compartments and the biophysical parameters,Rm, Cm andRa using standard relationships

[3]. The first summation in (1) is over all of the compartments linked to theith compartment. The

second summation is over all of the species of ionic conductances present on theith compartment.

The third summation is over all of the species of synaptic conductances present on theith

compartment.Istim(t) is a time-varying current injected into theith compartment. The somata are

modeled as spherical compartments and the dendrites are modeled as cylindrical compartments.

The axons are not modeled as compartments but as delay lines. For a detailed description of

compartmental models see [21] and [33]. In Fig. 8 we show the compartmental structures of the
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five types of cortical interneurons in the model cortex. Maps of the spatial distribution of neurons

in each of the three layers of the cortex are constructed from coronal sections through visual

cortex of a turtle. The maps are divided into an8×56 array of rectangular areas, each measuring

28× 190µm. Experimental data are not available for each of the8× 56 rectangular boxes and

are interpolated at locations where measurements are not available. An algorithm is developed in

MATLAB to construct an array of neurons in each layer that preserves the ratios of cells between

layers in the real cortex. The cells are distributed between8× 56 blocks according to the actual

density information. Within each block, the cell coordinates are chosen randomly from a uniform

distribution, independently for every block. This algorithm is convenient to use because it can

generate as many different models as needed, while retaining the information about the relative

densities of cells in the visual cortex of a real turtle. The model in our study has368 lateral

pyramidal cells,311 medial pyramidal cells,44 subpial cells,45 stellate cells and20 horizontal

cells (see Fig. 4). Biophysical data are not available for neurons in the dorsal lateral geniculate

complex of turtles, so geniculate neurons are modeled as single iso-potential compartments

with a spike generating mechanism. Geniculate axons are modeled as delay lines that extend

across the cortex from lateral to medial. The number of geniculate neurons in the model is

L = 201. The LGN neurons are linearly arranged along the lateral edge of the cortex with axons

extending to the cortex (see Fig. 6). The axons of the most rostral (right) and most caudal (left)

LGN neurons in the array extend to the caudal and rostral poles of the cortex, respectively.

The other afferents1 are evenly spaced between these two axons. Geniculate afferents enter the

cortex at its lateral edge, cross over each other and then run in relatively straight lines from

lateral to medial cortex. The rostro-caudal axis of the geniculate is consequently mapped along

the caudo-rostral axis of the cortex. The geometry of the geniculate afferents and their spatial

distribution are based on anatomical data from [17]. The number of synaptic sites (varicosities)

assigned to each geniculate afferent is calculated by multiplying the length of the axon by the

average number of varicosities per100µm of axon length. The spatial positions of the individual

varicosities (the total of approximately11, 300 varicosities has been used) are assigned to axons

using the distribution of varicosities along the lengths of real axons [17]. The distribution is

strongly skewed to the left, indicating a greater number of varicosities in the lateral than in the

1An afferent nerve carries impulses toward the central nervous system. The opposite of afferent is efferent
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medial part of the visual cortex. For cortico-cortical connections, we have constructed spheres of

influence. Therefore, a cortical neuron will be connected to any other cell in the cortex within its

sphere of influence. The synaptic strengths are higher in the center of influence and are linearly

reduced with the distance. Propagation times between neurons are calculated using the distance

between a pair of neurons and conduction velocities. The conduction velocity for geniculate

afferents in turtle visual cortex has been measured at0.18m/s [5]. Cortico-cortical connections

are given conduction velocities of0.05m/s, consistent with measurements of propagating waves

in the turtle visual cortex [27], and the conduction velocities for axons of inhibitory interneurons

in rat cortex [26].

III. G ENERATION OF ACTIVITY WAVES IN THE VISUAL CORTEX

We have already seen that a group of neurons in the turtle visual cortex has the ability to

sustain a traveling wave. Typically this wave results as an interaction between a feed-forward

and a feedback circuit (see Fig. 5), the details of which have been explained in [32]. Roughly

speaking, the feed-forward circuit controls the origination and propagating speed of the traveling

wave and the feedback circuit controls the propagation duration. Waves are typically generated

in the pyramidal cells as a result of an external input current that results in an increase in

membrane potential. Pyramidal cells locally excite each other, resulting in a region of neural

activity which tends to propagate in all directions. Left unabated, these pyramidal cells would

excite the entire cortex. Fortunately, the feed-forward circuit incorporates inhibitory actions from

the stellate and subpial cells. Although the precise roles of the two inhibitory cells are different

and somewhat unclear, they control the timing of wave generation. There are inhibitory actions

that inhibit the wave using a feedback circuit due to three different cells: subpial, stellate and

horizontal. The feedback inhibition reduces and eventually kills the neuronal activity at the spot

where the activity is greatest. The combined effect of the two circuits gives the appearance of

a traveling wave. Eventually these waves are killed by a strong gaba (a type of synaptic input)

initiated inhibition that originates after a long delay.

Using the large-scale model of the visual cortex that consists of excitatory and inhibitory

cells described above, we have observed that the neural population remains hyperpolarized (i.e.

maintained a very low membrane potential) long after the initial wave has been killed. The

cortex remains unresponsive to future visual inputs, an undesirable property. One way to remedy
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this problem is to detect this period of hyperpolarization and increase the synaptic interaction

between the excitatory pyramidal cells. This would amplify the tiny input into the pyramidal

cells, forcing these cell populations to get out of hyperpolarization. This is achieved successfully,

using Hebbian and AntiHebbian adaptation.

In Hebbian adaptation, the synaptic strength between two cells increases in proportion to the

product of the pre and post synaptic activities. Likewise, inAntiHebbian adaptation, the synaptic

strength between two cells decreases in proportion to the product of the pre and post synaptic

activities. In our model, the excitatory interconnection between pyramidal cells is chosen to be

AntiHebbian. This produces increasingly larger synaptic weights between pyramidal cells once

the waves have been abated. The inhibitory interactions between the stellate/subpial/horizontal

and the pyramidal cells are chosen to be Hebbian. These produce increasingly stronger inhibition

to active pyramidal cells (see Fig. 5). In Fig. 9 we show AntiHebbian action on the pyramidal

cells. Rows 1a and 2a show wave activity as a function of time. After about700 ms, the first

round of waves has been inhibited and the pyramidal cells are hyperpolarized. The weights

between the cells are very large, as indicated by the red lines in the rows 1b and 2b of Fig. 9.

A subsequent input causes a second round of waves (not shown in the figure).

In summary, we outline in this section how cortical cells have the ability to generate and

maintain a wave of activity. An important result, outlined in this chapter, is that the waves encode

target information from the visual scene. We show, using simulation of the model cortex, how

Hebbian and AntiHebbian adaptation has been used in generating a series of cortical waves. In

later sections we show how these waves encode the location of targets in the visual space. We

do not claim to have established a biological role of the Hebbian/AntiHebbian adaptation in the

wave generation process observed in actual turtles.

IV. SIMULATION WITH A SEQUENCE OF STATIONARY INPUTS

The stationary stimulus has been simulated by presenting a150 ms square current pulse to a

set of adjacent geniculate neurons (see Fig. 10). For the purpose of our simulation,3 equidistant

positions of the stimuli have been chosen across the LGN. The stimuli are labeled by ‘Left’,

‘Center’ and ‘Right’ (see Fig. 4), each input goes into20 LGN neurons,1–20, 91–110, and

181–200, respectively from left to right along the LGN array. To study the encoding property of

the large scale cortex model, noises have been introduced into the model by injecting randomly
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generated currents to the somata of cortical neurons that satisfy gaussian distribution. Using

waves generated by inputs at different locations in the visual space, we are able to study the

encoding property of the model cortex (see [9]).

Without the Hebbian and AntiHebbian adaptation, the model cortex produces propagating

waves of activity that last for about600 ms to 800 ms (see Fig. 3) with stationary inputs

described as above. After the wave has propagated, the cortical neurons remain hyperpolarized

and unresponsive to any future inputs. In order to study the ability of the model cortex to encode

a sequence of consecutive events, the model is expected to generate a sequence of activity

waves corresponding to a sequence of visual inputs. In this section we claim that by introducing

Hebbian/AntiHebbian adaptation we are able to pull out the model cortex from hyperpolarization

after the first wave has propagated.

With the implementation of Hebbian/AntiHebbian adaptation to the model cortex, one obtains

a model that responds to the activities of the pyramidal cells by altering intercellular synaptic

interactions. Among the many consequences of adaptation, an important one is that the duration

of wave propagation is shortened from about800 ms (see Fig. 3) to less than400 ms (see

Fig. 11). After the end of the first round of waves (around450 ms in Fig. 11), the synaptic

interactions between pyramidal cells are stronger in the case of model cortex with adaptation as

compared to the model without adaptation. This results in a strong amplification of tiny inputs

into the pyramidal cells, to compensate for the hyperpolarization of membrane potential. An

input initiated around500 ms results in a second wave (see Fig. 11).

The model cortex with adaptation that we describe in this section samples the visual world

every500 ms by producing a wave of cortical activity that lasts for a little less than400 ms. Each

of the 500 ms time interval would be called a period. In the simulations that we have carried

out, a target is shown only for the first150 ms of each period and removed subsequently. A

target can be located at three different locations: Left (L), Center (C) or Right (R). At any given

period, one would like to detect ‘target location’ from the associated cortical wave observed

during the same period. Furthermore, one would like the detection results at any given period

be independent of prior locations of the target.

In order to ensure that one period of cortical activity does not ‘spill over’ to the next period,

we consider a pair of consecutive periods. In each period a target is located at either ‘L’, ‘C’ or

‘R’. This gives rise to a total of nine pairs of target locations for the two consecutive periods
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given by ‘LL’, ‘LC’, ‘LR’, ‘CL’, ‘CC’, ‘CR’, ‘RL’, ‘RC’ and ‘RR’. Each combination of two

locations can be simulated as an input by presenting two150 ms square current pulses, that

start at0 ms and500 ms, to the corresponding sets of adjacent geniculate neurons respectively.

The overall simulation time is set to1000 ms. Each of the nine inputs causes the model cortex

(with adaptation) to produce a pair of waves of activity in each of the two consecutive periods.

Considering a noisy model of the cortex, the simulation is repeated20 times for each of the

nine input pairs giving rise to a set of180 pairs of activity waves.

The simulation results consisting of membrane potentials of individual neurons are recorded

and saved in a data file. Even though the data for all neurons are available, we are primarily

interested in the pyramidal neurons and the responses of pyramidal cells are denoted by

I(t, n), 0 ≤ t ≤ T, 1 ≤ n ≤ N wheret is time andn is the index of the pyramidal neuron.

The responses of pyramidal neurons are visualized as movies by spatially resampling the data

from a nonuniform grid of neuron coordinates to an artificially constructedl × l uniform grid.

The program uses triangle-based linear interpolation, although other methods are also available

(triangle-based cubic interpolation, nearest neighbor interpolation, etc) [20]. The interpolated

data, for visualization, are denoted byI(x, y, t) where the pair,(x, y), denote the pixels. The

value of membrane potential at each pixel is color coded and the spikes are not removed in the

process. Selected snapshots from movies corresponding to stationary stimuli (assuming a model

cortex without adaptation) are shown in Fig. 3. A comparison between model waves [20] and

experimental waves recorded by Senseman [28] show that the two waves have similar features.

They originate from the same point in the cortex (rostrolateral edge) and they propagate in both

rostrocaudal and mediolateral directions.

The spatiotemporal responseI(x, y, t) of the model cortex to different target locations can be

viewed as a collection of movie frames (snapshots). Given that every frame hasl × l pixels,

and every movie has m frames, it is clear that the dimension ofI(x, y, t) could be very high

(l × l × m). In order to compare two movies, in the next section we proceed to describe a

principal components based technique. This method has also been used earlier by Senseman and

Robbins for the analysis of data recorded from the cortex of a freshwater turtle [29], [30].

Principal components analysis has been introduced independently by many authors at different

times. The method is widely used in various disciplines such as image and signal processing,

data compression, fluid dynamics, partial differential equations, weather prediction, etc [11]. In
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image processing, the method is used for removing a redundancy (decorrelating pixels) from

images [25]. The transformation itself is linear, and represents a rotation of a coordinate system,

so that neighboring pixels in the new coordinate system are less correlated. Moreover, the

rotation proposed by the method is optimal as it leads to a complete removal of the correlation

from neighboring pixels, which is equivalent to diagonalizing the image correlation matrix.

Consequently, the image can be approximated in a low dimensional subspace, using only selected

basis vectors, also called principal eigenvectors. In the theory of partial differential equations,

the method is useful for finding a separable approximation to the solution of a partial differential

equation, which is optimal in the sense that it maximizes the kinetic energy cost functional [8].

Depending on the context, the method goes by the names: Karhunen-Loeve (KL) de-

composition, proper orthogonal decomposition, Hotelling decomposition and singular value

decomposition. We shall refer to it as the KL decomposition which has already been applied to

the analysis of cortical waves (see [9], [21] [29] [30]). The next section describes some of the

main ideas using double KL decomposition.

V. ENCODING CORTICAL WAVES WITH β-STRANDS USING DOUBLEKL DECOMPOSITION

In this section, we describe how the set of180 pairs of activity waves (described in section IV)

are encoded, using double KL decomposition, asβ-strands. For each of the nine input pairs,

the model cortex with adaptation is repeatedly simulated by adding independent and identically

distributed Gaussian noises to each of its neurons. As a result of additive noise injected to

the cortical neurons, repeated presentation of the same stimulus does not produce the same

response in general. We discuss how to utilize a two-step KL decomposition to analyze the

cortical responses of the model cortex to various stimuli with injected noises usingsliding

detection window(SDW) technique. As shown in Fig. 12, the time axis is covered by equal-

length, overlapping encoding windows and double KL-decomposition is applied to the segment

of the spike rate signal that is covered by each window. Both the starting and ending times of the

windows change while the length of the window remains constant. Another encoding window

technique considered in [9] is theexpanding detection window(EDW) for which the starting

time remains unchanged at0 ms. In this section we only describe the SDW technique using

which each segment of the cortical wave is mapped to a point in a suitably defined B-space.

Plotting images of successive windows produce a sequence of points in the B-space, called the
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β-strand (see Fig. 15). This is a vector-valued function of time and is an alternative way to

encode the original movie as a strand. The encoding process is now described in details.

Prior to the double KL decomposition process, the spike trains from the pyramidal cells are

smoothed by a low pass filter into a spike rate function. Fig. 13 shows some examples of spike

trains of pyramidal cells and their smoothed spike rates. For a particular input stimulus, we

continue to useI(t, n), 0 ≤ t ≤ T, 1 ≤ n ≤ N to denote the smoothed spike rate of the cell as

a spatio-temporal response signal, wheret is time andn is the index of the pyramidal neuron.

I(t, n) can be viewed as a matrix. Thetth row represents the spike rate of each neuron at timet

in response to a particular stimulus. Thenth column corresponds to the pyramidal neuronn. Let

the length of each time window bew and letI(t, n), t1+1 ≤ t ≤ t1+w, t1 = 0, a, 2a, · · · be

the response signals for different time windows. Herea is the amount of time that the encoding

windows slide (see Fig. 12). LetM denote the total number of cortical response movies in

response to stimuli in the left, center, and right visual field. For thekth, k = 1, 2, · · · , M

movie, the spatio-temporal signal in this time window can be viewed as a collection of vectors

{Ik(t1 + 1), Ik(t1 + 2), · · · , Ik(t1 + w)} where Ik(t1 + i) ∈ R1×N , i = 1, 2, · · · , w.

The dimensionality of the cortical response is reduced by two KL transforms into A-space and

B-space, respectively. We first describe the KL transform into A-space. The covariance matrix

C1 ∈ RN×N for a family of M movies is calculated as

C1 =
1

Mw

M∑

k=1

w∑
i=1

(Ik(t1 + i))T (Ik(t1 + i)) (2)

where(Ik(t1 + i))T is the transpose ofIk(t1 + i). The matrixC1 is symmetric and positive semi-

definite, so its eigenvalues are all real and non-negative and the corresponding eigenvectors form

an orthonormal basis inRN . The eigenvectors corresponding to the largestp eigenvalues ofC1

are called the principal eigenvectors, or modes, and thepth-order successive reconstruction of

the spatio-temporal signalIk(t) ∈ R1×N is given by

Îk(t1 + i) =

p∑
j=1

αk
j (t1 + i) φT

j , i = 1, 2, · · · , w (3)

where φj ∈ RN×1 is the jth principal mode, the time coefficientsαk
j (t1 + i) are given by

αk
j (t1 + i) = 〈Ik(t1 + i), φT

j 〉 and 〈·, ·〉 stands for the standard inner product. The coefficients

αk
j (t1 + i) of the KL-decomposition are uncorrelated in terms ofj and we callαk

j (t), t1 + 1 ≤
t ≤ t1 + w, 1 ≤ j ≤ p the pth-order A-space representation of the movie segment within the
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corresponding time window for thekth movie. Fig. 14 shows the first three principal modes and

the corresponding time coefficients in a certain time window. The vector function

[αk
1(t), αk

2(t), · · · , αk
p(t)], t1 + 1 ≤ t ≤ t1 + w (4)

can be viewed as a sample function of a vector random process. Statistical analysis of a

random process can be facilitated if the process is further parameterized using a second KL

decomposition. Let

γk
j =




αk
j (t1 + 1)

αk
j (t1 + 2)

...

αk
j (t1 + w)




, (ξk)T =




γk
1

γk
2

...

γk
p




(5)

wherej = 1, 2, · · · , p. Calculating the covariance matrix as in (2), we have

C2 =
1

M

M∑

k=1

(ξk)T (ξk). (6)

The qth-order successive approximation of thekth vectorξk is given by

ξ̂k =

q∑
j=1

βk
j ψT

j (7)

whereψj, j = 1, 2, · · · , q are the eigenvectors corresponding to the largestq eigenvalues of the

matrix C2. The coefficientsβk
j are found by orthogonal projection ofξk onto thejth eigenvector

βk
j = 〈ξk, ψT

j 〉. The β vector is referred to as the B-space representation of the cortical movie

restricted to a given time window. It turns out that only a fewβ components capture most of the

information contained in the original movie and the rest of theβ components are close to zero.

Repeating the above data processing procedure for all the sliding encoding windows of a movie

produces aβ-strand as a vector-valued function of time. We refer to thisβ-strand as the B-space

representation of this movie. By discarding those components that are close to zero, we obtain

a low dimensional representation of the original movie segment. If, for each sliding encoding

window, the firstq components of eachβ vector are used, we say that the vector consisting of

theseq components is theqth-order B-space representation of the movie. The statistical mean

of the β-strands of the left-, center-, and right-stimuli movies can be easily obtained. In our

analysis of this section, we usedw = 10, M = 180, p = 679, q = 3 and the values oft1 were

chosen to be0, 2, 4, · · · . Fig. 15 shows the meanβ-strands for60 presentations of stimuli at the
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left, center, and right clusters of geniculate neurons in the first time period and the second time

period respectively.

VI. STATISTICAL DETECTION OF POSITION

In this section, the problem of detection is posed as a hypothesis testing problem. Assume

that the three positions of the target correspond to three different hypotheses, i.e. letH1, H2 and

H3 denote the hypothesis that the stimulus is from the left, center and right, respectively. Let us

write

r(t) = si(t) + n(t), i = 1, 2, 3 (8)

where n(t) represents a vector-valued Gaussian noise process contained in theβ-strand with

mean0.

A. Series Expansion of Sample Functions of Random Processes

The β-strand,r(t), can be regarded as a sample function of a vector stochastic process. It is

well known that a deterministic waveform with finite energy can be represented in terms of a

series expansion. This idea can be extended to include sample functions of a random process

as well. In our case, we propose to obtain a series expansion of theβ-strand within a chosen

detection window. This process involves finding a complete orthonormal set{φi(t), i ∈ N} (N

denotes the set of integers) and expandingr(t) as:

r(t) = l.i.m.L→∞
L∑

i=1

riφi(t), T1 ≤ t ≤ T2 (9)

whereφi(t) are vectors of the same dimension asr(t). Let us denoterk(t) andφk
i (t) to be the

kth component of the vectorsr(t) and φi(t) respectively. In (9),l.i.m. denotes “limit in the

mean” which is defined as

lim
L→∞

E[

q∑

k=1

(rk(t)−
L∑

i=1

riφ
k
i (t))

2] = 0, T1 ≤ t ≤ T2 (10)

whereE is the expectation operator. The coefficientsri, to be defined later in (13), are required

to be uncorrelated with each other. This is to say that, ifE[ri] = mi, then we would like to have

E[(ri −mi)(rj −mj)] = λiδij. (11)
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The value ofr2
i has a simple physical interpretation. It corresponds to theenergyalong the

coordinate function,φi(t), in a particular sample function. It is shown in [31] that ifmi = 0,

thenλi is theexpectedvalue of the energy alongφi(t). Clearly,λi ≥ 0 for all i. The complete

orthonormal setφi(t) is the solution of the integral equation:

λiφ
k
i (t) =

q∑
j=1

∫ T2

T1

Kkj(t, u)φj
i (u)du (12)

wherek = 1, 2, · · · , q, T1 ≤ t ≤ T2 and K(t, u) is the covariance matrix of the noise

processn(t), i.e. Kij(t, u) = E[ni(t)nj(u)]. Here, t and u denote time andi and j denote

indices of the component of the vector noise process. In (12),λi is called the eigenvalue of the

noise process andφi(t) is called the corresponding eigenfunction. Once the coordinate functions

{φi(t), i ∈ N} are obtained, one can project the sample functionr(t), T1 ≤ t ≤ T2 onto φi(t)

and obtain the coefficientri as

ri =

q∑

k=1

∫ T2

T1

rk(t)φk
i (t)dt. (13)

Let us recall from section V thatq is the number ofβ components we choose for the B-space

representation of the cortical movies. Theνth-order representation ofr(t) can then be written

as a vectorR = [r1, r2, · · · , rν ].

B. Hypothesis Testing

The proposed detection algorithm is based on computing conditional probability densities and

choosing a decision criterion (see [31] for details). Commonly used decision criteria include the

Bayes and Neyman-Pearson criteria. In this paper, we use the former for two reasons. The first

is that the hypotheses are governed by probability assignments which we denote asPj, j =

1, 2, 3, i.e. hypothesisH1 occurs with probabilityP1, hypothesisH2 with probability P2 and

hypothesisH3 with probabilityP3. The second reason is that a certain cost is incurred each time

an experiment is conducted. We propose to design our decision rule so thaton the averagethe

cost is as small as possible. It is demonstrated [31] that for a decision using the Bayes criterion,

the optimum detection consists of computing the logarithm likelihood ratio and comparing it to

a threshold. If we assign the cost of correct detection to be zero and that of a wrong detection
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to be1, the likelihood ratio can be computed (see section 2.3 of [31]) as follows:

Λ1(R) =
pr|H2(R|H2)

pr|H1(R|H1)
(14)

Λ2(R) =
pr|H3(R|H3)

pr|H1(R|H1)
. (15)

The decision regions in the decision space are determined by comparing the logarithm likelihood

ratio to the following thresholds:

ln Λ1(R)
H2orH3

≷
H1orH3

ln
P1

P2

(16)

ln Λ2(R)
H3orH2

≷
H1orH2

ln
P1

P3

(17)

ln Λ2(R)
H3orH1

≷
H2orH1

ln Λ1(R) + ln
P2

P3

. (18)

The associated decision space has been sketched in Fig. 16. For a particular strandr(t), we say

that the hypothesisH1 is true, i.e. the stimulus is from the left part of the visual space, if the

logarithm likelihood ratio pair falls in regionH1. Likewise, the same can be said forH2 and

H3.

In Fig. 16, if P1 = P2 = P3 = 1/3, the dividing line between regionsH1 andH2 becomes the

negative vertical axis, the dividing line between regionsH2 andH3 becomes the diagonal line

which is 45 degrees counterclockwise from the positive horizontal axis, and the dividing line

between regionsH3 andH1 becomes the negative horizontal axis. In the following discussion,

we assume thatP1 = P2 = P3 = 1/3. The vector noise processn(t) in (8) could be either white

or colored and we address only the case for whichn(t) is white.

C. Decoding with Additive Gaussian White Noise Model

If the vector noise process is Gaussian and white, i.e.E[n(t)nT (u)] = N0Iδ(t − u), where

N0 ∈ R, I is the identity matrix, andδ(·) is the Dirac function, the eigenfunctions of the

noise process turn out to be the orthonormalization of{si(t), i = 1, 2, 3}. So, instead of

solving the integral equation (12), we apply the Gram-Schmidt orthogonalization procedure on
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{si(t), i = 1, 2, 3} to get{φi(t), i = 1, 2, 3} as

φ1(t) = s1(t)/norm(s1(t))

φ2(t) = ψ2(t)/norm(ψ2(t))

φ3(t) = ψ3(t)/norm(ψ3(t))

where

ψ2(t) = s2(t)− c1 ∗ φ1(t)

ψ3(t) = s3(t)− c2 ∗ φ1(t)− c3 ∗ φ2(t)

c1 = IP(s2(t), φ1(t))

c2 =

∣∣∣∣∣∣
IP(s3(t), φ1(t)) IP(φ2(t), φ1(t))

IP(s3(t), φ2(t)) IP(φ2(t), φ2(t))

∣∣∣∣∣∣
∣∣∣∣∣∣

IP(φ1(t), φ1(t)) IP(φ2(t), φ1(t))

IP(φ1(t), φ2(t)) IP(φ2(t), φ2(t))

∣∣∣∣∣∣

c3 =

∣∣∣∣∣∣
IP(φ1(t), φ1(t)) IP(s3(t), φ1(t))

IP(φ1(t), φ2(t)) IP(s3(t), φ2(t))

∣∣∣∣∣∣
∣∣∣∣∣∣

IP(φ1(t), φ1(t)) IP(φ2(t), φ1(t))

IP(φ1(t), φ2(t)) IP(φ2(t), φ2(t))

∣∣∣∣∣∣

and IP(·, ·) and norm(·, ·) are defined respectively as

IP(a(t), b(t)) =

q∑

k=1

∫ T2

T1

ak(t)bk(t)dt

norm(a(t)) =
√

IP(a(t), a(t)).

The remainingφi(t) consist of an arbitrary orthonormal set whose members are orthogonal

to φ1(t), φ2(t), φ3(t) and are chosen so that the entire set is complete. We then projectr(t)

onto this set of orthonormal coordinate functions to generate coefficientsri as in (13). All

of the ri except r1, r2, r3 do not depend on which hypothesis is true and are statistically

independent ofr1, r2, r3. The mean values ofr1, r2, r3 depend on which hypothesis is true:

E[ri|Hj] = mij, i, j = 1, 2, 3. Note also that the coefficientsr1, r2, r3 are uncorrelated with

January 26, 2007 DRAFT



BOOK CHAPTER, VOL. XX, NO. XX, DEC. 2006 17

each other. Based on the Gaussian assumption, the logarithm likelihood ratio (14) and (15) can

be calculated as

ln Λ1(R) =
3∑

i=1

1

N0

(rimi2 − 1

2
m2

i2 − rimi1 +
1

2
m2

i1)

ln Λ2(R) =
3∑

i=1

1

N0

(rimi3 − 1

2
m2

i3 − rimi1 +
1

2
m2

i1).

In this study, the length of the sliding detection window has been set to99 ms. The waves

generated in each of the time periods have been used to detect the location of the target at that

time period. In Fig. 17, we show the decision spaces for a set of five different time windows

chosen from two consecutive time periods. The column in the left corresponds to the first period

and the column in the right corresponds to the second period. The noisen(t) is assumed to be

additive, white, Gaussian and independent over time.

For each of the decision spaces in Fig. 17, each point on the decision space represents a

given cortical wave (restricted to the corresponding time window) in response to an unknown

stimulus. The actual position of the stimuli at left, center and right cluster of geniculate neurons

are encoded by the blue, red and green colors, respectively. Ideally, any point corresponding

to a left, center, or right stimulus should fall in the region ofH1, H2, or H3, respectively on

the decision space. Any point that does not fall in its corresponding region in the decision

space produces a detection error. In Fig. 18, we have plotted the detection error probability as

a function of the location of the ‘time window’. We observe that the detection error increases

slightly when the detection window slides to the latter part of any period. This indicates that the

target locations are ‘less detectable’ towards the latter part of the period in comparison to the

earlier part, an observation that has already been made by Du et al. [9]. We also note that the

detection error probabilities are slightly higher for the second time period in comparison to the

first indicating the ‘spill over effect’ from the first time period. This phenomenon has not been

studied in details in this chapter and will be described in future.

VII. D ETECTION USING NONLINEAR DYNAMICS

The purpose of this section is to introduce yet another computing paradigm, emerging

from a network of oscillators, for the purpose of decoding from cortical waves. Elements of

the oscillator network interact with each other via phases rather than amplitudes; memorized
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patterns correspond to synchronized states. Each unit of the oscillator network oscillates with

the same frequency and a prescribed phase relationship. For pattern recognition with a network of

oscillators, phase differences, instead of phases, play a crucial role. The mechanism of recognition

is related to phase locking. To illustrate the main idea, we would like to review a model proposed

by Kuramoto [12].

A. Phase Locking with a network of Kuramoto Models

Consider a dynamical system of the form

φ̇i = ω +
N∑

j=1

sij sin(φj − φi + ψij) (19)

whereφi, i = 1, · · · , N (assumeN = 2 for illustration), are phase variables taking values in the

interval [−π, π). The parameterssij andψij are assumed to satisfysij = sji, ψij = −ψji. The

index i, refers to theith unit and these units are coupled. In order to understand the dynamics

of (19), we define a new variableφ = φ1 − φ2 and rewrite (19) as follows

φ̇ = −2s12 sin(φ− ψ12). (20)

The stationary points of (20) are given byφ − ψ12 = kπ, out of which the stable points are

given precisely by

φ− ψ12 = 2kπ, k = 0,±1,±2, · · · (21)

For φ1, φ2 in the interval [−π, π), φ = ψ12 and φ = ψ12 + 2π are the two stable points if

ψ12 < 0, andφ = ψ12 andφ = ψ12 − 2π are the two stable points ifψ12 > 0. Up to mod2π,

the two stable points ofφ are actually the same indicating that (20) converges globally to an

unique equilibrium point.

B. Memory with two elements

Let us discuss the problem of detectingn patterns with a Kuramoto model using two units

(i.e. N=2). In order to use (20) for the purpose of memorizingn patterns, we would require that

it has (at least)n equilibria. This can be achieved by rescaling the phase variables as

φ̄1 =
1

n
φ1, φ̄2 =

1

n
φ2.
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Rewriting (19) with respect to the new variables, we obtain

˙̄φ1 =
1

n
ω +

1

n
s12 sin(nφ̄2 − nφ̄1 + ψ12)

˙̄φ2 =
1

n
ω +

1

n
s21 sin(nφ̄1 − nφ̄2 + ψ21).

By defining φ̄ = φ̄1 − φ̄2, we obtain analogously the following equation

˙̄φ = − 2

n
s12 sin(nφ̄− ψ12). (22)

Up to mod2π, then stable stationary points of (22) are given byφ̄e
k = ψ12

n
+ 2(k−1)π

n
if ψ12 < 0.

Additionally it can be verified that if

φ̄e
k −

π

n
< φ̄(0) < φ̄e

k +
π

n
, (23)

then φ̄(t) converges to thekth stable stationary point̄φe
k. The phase difference variablēφ(t) can

be plotted as a unit complex numbereiφ̄(t). In Fig. 19 such a plot is shown when the rescaling

parametern is 3. This gives rise to three stable stationary points atφ̄e
k = ψ12

3
+ 2(k−1)π

3
, k = 1,

2 and3.

The main idea behind pattern recognition is to utilize the convergence properties of (22) to

distinguish amongn complex patterns. Let us define the followingn vectors inC2 as

p1 =


 π1

π2


 and pk =


 e+i

(k−1)π
n π1

e−i
(k−1)π

n π2


 (24)

for k = 2, 3, · · · , n whereπ1 andπ2 are any two complex numbers such that

|π1| = |π2| = 1

and

arg(π1π̄2) =
ψ12

n
.

The complex vectorspk, k = 1, 2, . . . , n, aren memorized complex patterns associated withn

stable equilibriaφ̄e
k, k = 1, 2, . . . , n. Let us define a mapping

ξ : C2 −→ R (25)

as follows 
 w1

w2


 7−→ arg(w1w̄2).
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It would follow that ξ(pk) = φ̄e
k = ψ12

n
+ 2(k−1)π

n
. Thus then patternspk, k = 1, 2, · · · , n, are

mapped to then stable equilibria of (22) under the mapξ. Patterns which are close to anypk

would be attracted towards the correspondingkth equilibrium. This principle can therefore be

used to recognize between alternative target locations which we would now like to explore.

Target locations are not typically given as a vector of complex numbers. Hence we are not

interested in a set of complex patterns. Rather, we would like to memorize patterns of real

vectors. Assume that we haven vectorsvk, k = 1, 2, · · · , n, in RQ which we would like to

memorize. We consider a map

T : RQ −→ C2 (26)

such that

vk 7−→ pk, k = 1, 2, · · · , n

wherepk-s are defined as in (24). The memorized patterns are associated with phase difference

equilibria via the mapξT where

ξT (vk) = φ̄e
k.

The dynamics of (22) can be used to memorize patterns ofn real vectors. To detect a patternv

in RQ, the phase variablesφi-s of the two oscillatory units can be initialized withξT (v) and

φ̄(t) converges to one of the equilibria.

As an illustration, a Kuramoto model with2 units has been chosen to detect the position of

visual inputs from the cortical waves generated in the first time period and the second time period

respectively. Three equilibria are achieved by rescaling withn = 3. The locations of target are

detected with theβ-strands within a sliding time window of width99 ms. The average of points

on β-strands within the sliding time window in either first or second time period, inRQ, are

mapped to the complex vector spaceC2 and the phases of2 units in the Kuramoto model are

initialized. The mapT can be either linear or nonlinear. In the case of linear transformation,

the mapT between the real vector spaceRQ and the complex vector spaceC2 is obtained by

minimizing the following error criterion

3∑

k=1

60∑
j=1

||pk − Tqkj|| (27)
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wherek is the position index andj varies over the total number of movies. The vectorspk-s

are defined in (24) and the vectorsqkj are average of theβ-strands within a time window. In

this example, we haveQ = 3 indicating that only the first three principal components are used

for the detection problem. It follows that the rescaled phase differenceφ̄ = φ
3

converges to one

of the three equilibria that are associated to the three positions of the targets, ‘L’, ‘C’ and ‘R’.

Fig. 20 shows plots of phase difference variableφ̄(t) in terms of sin and cos functions over

time for the detection results from180 cortical responses using the two units Kuramoto model

and linear map upon the average points onβ-strands within the time window associated the

waves in the first time period (left column) and the second period (right column) respectively.

The figure shows the detection results within five different sliding time windows. Each curve

in Fig. 20 represents a given cortical wave in response to an unknown stimulus. The actual

positions of target at left, center and right cluster of geniculate neurons are encoded by blue, red

and green colors respectively. Ideally, any curve corresponding to a left, center, or right stimulus

should converge to the associated point of equilibria. Any curve that does not approach to its

corresponding equilibrium produces a detection error. Performing the detection over a continuum

of detection windows and summing the total detection error for each detection window yields the

relationship between the probability of detection error and detection window as shown in Fig. 21.

It may be remarked that the detection error probabilities are quite large in comparison to Fig. 18

indicating that the algorithm using nonlinear dynamic methods require further improvement.

Since the maps fromβ-strands to complex vector space is not limited to be linear, one would

like to ask if there is a nonlinear map for which the detection results can be improved. In this

chapter we give an example of such a map that can improve the detection results using Kuramoto

model. We consider the nonlinear mapL from the spaceRQ of β-strands to the points on the

decision spaceS, obtained in section VI. Subsequently, we can map the points on the decision

spaceS onto the complex vector spaceC2 by a linear transformationD. The maps defined are

described as follows:

L : RQ −→ S

D : S −→ C2
(28)

The mapD is obtained by constructing an optimal linear function that maps each of the three

clusters on the decision spaceS to their corresponding patterns on the complex vector space

C2. The details are similar to optimizing a cost function of the form (27). By concatenating the
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two mapsL andD we obtain a nonlinear map from the space ofβ-strands onto the spaceC2

of complex patterns. One can now use the Kuramoto model as described earlier. The detection

results, shown in Figs. 22 and 23 are considerably improved in comparison to Figs. 20 and 21.

VIII. R OLE OF TECTAL WAVES IN MOTOR CONTROL: A FUTURE GOAL.

We have remarked earlier that an important role of the cortex is in predicting the future

locations of a moving target. The turtle tries to track a moving fish by anticipating its future

location. We now describe in some details as to how the tracking movement is executed.

In Fig. 7 we show that a turtle is trying to catch a fish that is moving past it from left to

right.The turtle first notices the fish at pointx1 at time t1. It watches the fish until it reaches

point x2 at timet2, and then moves towards the fish to grasp it with its mouth. However, the fish

keeps moving and reaches pointx3 by the timet3, when the turtle completes its head movement.

Thus, the turtle will miss the fish if it bases its head movement on the position of the fish when

the movement began. To be successful, the turtle must extrapolate the present position of the

fish and plan its head movement to reach pointx3 at time t3. However, the fish has a stake in

the event and will try to evade capture by making escape movements that appear unpredictable

to the turtle. An important question in this context is – “How does the turtle accomplish this

complex motion extrapolation task?”

The neural system in Fig. 1 is the substrate for the prey capture behavior. A light intensity

function, I(x, y, t), contains the image of the moving fish that is the input to the system.

The image is transformed by the retinal circuitry and fed, in parallel to the lateral geniculate

nucleus and optic tectum. The lateral geniculate transmits information to the cortex, which

sends information to the tectum via the striatum, pretectum and substantia nigra. The tectum,

thus, receives direct information from the retina with a relatively short time delay and indirect

information from the cortex with a longer delay. The tectum contains a topographic map of visual

space and can generate a head movement directed towards pointx2 at timet2. The movement is

realized by projections from the tectum to the brain stem reticular formation, which drives the

motoneurons that innervate the neck muscles.

An interesting feature of the dynamics of this system is that moving stimuli produce waves of

activity in the retina, visual cortex and tectum. Berry et al. [2] used single electrodes to record

the responses of retinal ganglion cells in salamanders and rabbits to moving bars. The neural
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image of the bar on the retina is a wave of activity that leads the advancing edge of the bar.

This phenomenon is due to a contrast gain mechanism in the retinal circuitry and is a potential

mechanism underlying motion extrapolation. Wilke et al. [34] used an array of 100 extracellular

electrodes to record the responses of ganglion cells in turtles to moving and stationary bars. A

moving bar produced a rapid and intense increase in the firing of ganglion cells that was not

seen following the presentation of a stationary bar. Several studies [1], [18], [19]) suggest that

moving stimuli produce a wave, or ‘hill’, of activity in the superior colliculus (the mammalian

homolog of the optic tectum). More recently, Port et al. [22] recorded simultaneously from

pairs of electrodes implanted in the superior colliculus of macaques while the monkeys made

visual saccades. Their data suggest that relatively large saccades – typically coordinated with

head movements – are accompanied by a wave of activity that proceeds from caudal to rostral

across the superior colliculus. They hypothesize that this wave is involved in determining the

duration of eye and head movements. Finally, studies using both multielectrode arrays and voltage

sensitive dyes (VSDs) show that visual stimuli produce waves of activity in the visual cortex

of freshwater turtles [28]. Information about the position and speed of visual stimuli is encoded

in the spatiotemporal dynamics of the wave [9], [20]). Both retinal and tectal waves have been

considered as candidate mechanisms for motion extrapolation [22], [34]), so it is natural to

inquire if they play a role in the turtle’s attempt to catch the fish.

Our future work would test the hypothesis that the waves in the visual cortex and optic tectum

contain information that can be used to extrapolate the future position of a moving stimulus from

its past trajectory. Specifically, we hypothesize that the cortical wave contains information that

can be used to extrapolate the future position of a stimulus that has been moving along a

smooth trajectory, while the tectal wave contains information that can be used to predict the

future position of a stimulus that undergoes an abrupt changes in it’s trajectory.

IX. CONCLUSION

To conclude, we would like to emphasize that the retino-cortical circuit of a turtle has been

described in this chapter. The animal scans the visual world by splitting it into a sequence of time

windows called ‘periods’. In each period, the cortex produces a wave of activity. We emphasize

how Hebbian/AntiHebbian adaptation plays a crucial role in maintaining a sequence of cortical

activity and describe how these activity waves can be used to decode locations of unknown
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targets in space. Two different decoding algorithms have been discussed in this chapter. The first

algorithm utilizes a ‘Statistical Detection’ method to detect the location of a target in the visual

space. The proposed method utilizes hypothesis testing by projecting the observed data onto a

decision space. The second algorithm is developed using a nonlinear dynamic model that has the

ability to converge to an equilibrium point based on where the model has been initialized. Each

of the equilibrium points is calibrated with alternative locations of the target and a function is

constructed that maps the raw data onto a vector space of complex numbers, that can be used as

an initial condition for the model. For the purpose of this chapter, we use the Kuramoto model

and construct two different functions that generate the required initial conditions. We show that

in order to obtain detection results comparable to that obtained by the ‘Statistical Method’, a

nonlinear function is required to generate the associated initial conditions, and we construct one

such function in this chapter. The role of the retino-cortical pathway is discussed in the context

of the overall visuomotor control problem and we remark that the tectum plays an important

part in the generation of the associated motor commands. Such control problems are the subject

of future research.
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Fig. 1: Kinematic analysis of turtle prey capture. Selected movie frames at the top of the figure

show a turtle orienting to a moving fish (arrow) in frame 01 - 82, moving towards it (100 -

130), extending and turning its neck (133 - 135) and capturing the fish (138). The bottom image

shows the digitization points of the kinematic analysis.

Lateral
Medial
Subpial
Stellate
Horizontal

RCL

CORTEX

Fig. 2: The Visual Pathway in the turtle visual system from eyes to visual cortex
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Fig. 3: A traveling wave of cortical activity from the model cortex without Hebbian and

AntiHebbian adaptation.

Fig. 4: Distribution of cells in each of the three layers of the turtle cortex projected on a plane.

The lateral geniculate (LGN) cells are distributed linearly (shown at the right side of the bottom

edge of the cortex) and the solid line shows how they interact with cells in the cortex.
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Fig. 5: Cortical circuit of freshwater turtles. Interconnection between neurons in various layers of

the visual cortex is shown. Each box symbolizes a population of cells. The geniculate afferents

(GA) provide excitatory input to cells in both pathways. The pyramidal cells (PYR) are excitatory.

The distinction between medial and lateral pyramidal cells is not made in this diagram. The

subpial (SP), stellate (ST) and horizontal (H) cells are inhibitory. The axons of pyramidal cells

leave the visual cortex to other cortical areas and to the brainstem in both pathways.

January 26, 2007 DRAFT



BOOK CHAPTER, VOL. XX, NO. XX, DEC. 2006 30

Fig. 6: Linear arrangement of geniculate neurons. The somata are shown as boxes and the

corresponding axons are shown as lines. Only 13 out of 201 LGN neurons are shown for clarity.

Fig. 7: Prey capture and motion extrapolation. A. To capture a moving fish, a turtle must

extrapolate its future position. B. Probable neural substrate for motion extrapolation in turtles.

(Abbreviations: LGN, lateral geniculate nucleus; PT, pretectum; RF, reticular formation; SN,

substantia nigra).
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Fig. 8: Compartmental structures of cortical neuron models in the large scale model of turtle

visual cortex
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Fig. 9: Pyramidal to pyramidal AntiHebbian synaptic response to changes in the pyramidal

activity. (1a): Frames of pyramidal cell activity due to pulse input to the LGN at0 ms lasting

for 150 ms. (1b): Frames of weight responses corresponding to the activities in 1a.(2a): Frames

of pyramidal cell activity due to pulse input to the LGN at400 ms following the first pulse

lasting for150 ms. (2b): Frames of synaptic weight responses corresponding to activities in 2a.
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Fig. 10: The Figure shows simulation of flash inputs
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Fig. 11: Two cortical waves generated by the model cortex using Hebbian and AntiHebbian

adaptation with two consecutive inputs. The second input is initialized at500 ms.

Fig. 12: Encoding window. The time axis is covered by equal-length, overlapping, sliding

encoding windows. Both the starting and ending times of the windows slide over the time

axis while the length of the window remains constant.a is the amount of time that the window

slides andw is the width of each encoding window.
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Fig. 13: Responses of model pyramidal cells. The traces in the left column show voltage traces

from three model pyramidal cells. The traces in the right column show the smoothed spike rate

of the same three cells.
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i = 3

Fig. 14: The left hand column shows the three principal spatial modes. The right hand column

shows the corresponding time coefficients.
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Fig. 15: The typicalβ-strands with double KL decomposition. In the left figure are the mean

β-strands for the60 presentations for stimuli presented at the left, center, and right clusters of

geniculate neurons in the first time period. In the right figure are the meanβ-strands in the

second time period. The colors, blue, red and green, represent the actual positions of stimuli at

left, center and right clusters of geniculate neurons.

Fig. 16: Decision space divided into three regions,H1, H2, andH3, in terms of the logarithm

likelihood ratio (14) and (15).H1 is the hypothesis that the visual input is from left;H2 is the

hypothesis that the visual input is from center;H3 is the hypothesis that the visual input is from

right. For any giveβ-strandr(t), the region that the pairln Λ1(R) and ln Λ2(R) fall into in the

decision space determines which hypothesis is true.
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Fig. 17: Decision Spaces for the detection of three hypotheses detection. The coordinates are log

likelihood ratios computed for five different time windows. On the left column are the decision

spaces using the waves in the first time period and on the right column are the decision spaces

using the waves in the second time period. The actual positions of stimuli at left, center and

right clusters of geniculate neurons are encoded by the blue, red and green colors respectively.
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Fig. 18: Detection error probability using statistic method with sliding time window of99 ms

points onβ strands. Left figure shows the detection error probability using the first waves and

Right figure shows the detection error probability using the second waves.
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Fig. 19: Phase variablēφ(t) is plotted as a unit complex numbereiφ̄(t) with the rescaling parameter

3, showing three stable equilibria which result in three regions of convergence for the dynamical

system (22) under initial conditions constrained by (23).
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Fig. 20: Convergence of phase variables in the two units Kuramoto model in detection with

linear maps fromβ-space to complex vector space using the first waves and the second waves

for five different time windows. The actual positions of stimuli at left, center and right clusters

of geniculate neurons are encoded by the blue, red and green colors respectively.
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Fig. 21: Detection error probability using Kuramoto Model with points onβ strands within

sliding time window of99 ms . Left figure is the detection error probability using the first waves

and Right figure is the detection error probability using the second waves.
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Fig. 22: Convergence of phase variables in the two units Kuramoto model in detection with maps

from points in Decision Space to complex vector space using the first waves and the second

waves. The actual positions of stimuli at left, center and right clusters of geniculate neurons are

encoded by the blue, red and green colors respectively.

January 26, 2007 DRAFT



BOOK CHAPTER, VOL. XX, NO. XX, DEC. 2006 41

0 50 100 150 200 250 300 350 400 450 500
−0.05

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350 400 450 500
−0.05

0

0.05

0.1

0.15

0.2

First Waves Second Waves

Fig. 23: Detection error probability using Kuramoto Model with maps from points in Decision

Space to complex vector space. Left figure is the detection error probability using the first waves

and Right figure is the detection error probability using the second waves.
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