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Encoding and Decoding Target Locations With Waves
in the Turtle Visual Cortex

Xiuxia Du*, Bijoy K. Ghosh, Fellow, IEEE, and Philip Ulinski

Abstract—Visual stimuli elicit waves of activity that propagate
across the visual cortex of turtles. An earlier study showed that
these waves encode information about the positions of stimuli in
visual space. This paper addresses the question of how this infor-
mation can be decoded from the waves. Windowing techniques
were used to temporally localize information contained in the
wave. Sliding encoding windows were used to represent waves of
activity as low dimensional temporal strands in an appropriate
space. Expanding detection window (EDW) or sliding detection
window (SDW) techniques were combined with statistical hypoth-
esis testing to discriminate input stimuli. Detection based on an
EDW was more reliable than detection based on a SDW. Detec-
tion performance improved at a very early stage of the cortical
response as the length of the detection window is increased. The
property of intrinsic noise was explicitly considered. Assuming
that the noise is colored provided a more reliable estimate than
did the assumption of a white noise in the cortical output.

Index Terms—B space representation, Karhunen–Loeve (KL)
decomposition, statistical hypothesis testing, turtle visual cortex.

I. INTRODUCTION

SENSORY stimuli produce waves of activity that propagate
across the cerebral cortex [1]. Such waves have been de-

scribed in the primary visual [2], [3] and somatosensory cortices
of mammals [4]–[6], including humans [7]. Propagating waves
have also recently been studied in the visual cortex of fresh-
water turtles using both multielectrode and voltage sensitive dye
methods [8]–[10]. Analysis of the waves of activity occurring
in turtle visual cortex raised the possibility that these waves en-
code information about stimuli in visual space. Nenadic et al.
[11] used a large-scale model of turtle visual cortex to simulate
the responses of the cortex to stationary and moving visual in-
puts. The response waves can be viewed as movies consisting
of a sequence of frames, each of which represents the level of
depolarization seen at an array of points in the cortex. To decode
the information encoded in the waves, Nenadic et al. [11] used
a two-step Karhunen–Loeve (KL) decomposition. The first de-
composition represents a wave as a linear combination of a se-
ries of spatial modes with time-varying coefficients. Thus, the
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wave is adequately represented (as has already been shown by
Senseman and Robbins [10]) by a trajectory in a phase space
called A-space. Most of the energy contained in the original
wave can be captured by the decomposition coefficients corre-
sponding to the first three principal modes. A further reduction
of the dimensionality of the wave is achieved by a second KL
decomposition which maps the trajectory in A-space into a point
in a low-dimension space called B-space. B-space is spanned by
temporal modes. Maximum likelihood estimation methods [12]
were used to show that position and velocity information in the
visual stimulus could be reliably estimated from the spatio-tem-
poral dynamics of the cortical wave.

This paper continues the analysis of information encoding
and decoding in cortical waves by addressing three points that
were not considered by Nenadic et al. [11]. Firstly, Nenadic
et al. [11] used cortical responses that lasted 1500 ms to
estimate visual inputs. However, it is clear that turtles can
make reliable visual discriminations in much less than 1500 ms.
Turtles can be trained to discriminate targets that are presented
for times ranging between 107 ms and 148 ms, depending
upon the size and color of the target [13]. This raises the
question of how much time is required to make accurate
estimates of visual stimuli from the spatio-temporal dynamics
of the waves. The problem was considered here by using
windowing techniques, including a sliding encoding window
in the wave encoding process and expanding detection window
(EDW) and sliding detection window (SDW) techniques in
the information decoding process, to estimate the position of
stimuli in visual space. These techniques make it possible to
localize the information contained in individual time segments
of the cortical response. The estimation approach in [11] can be
considered as a single detection window that spans from time
0 to 1 500 ms. Secondly, the model used by Nenadic et al. [11]
was deterministic in that no noise source was included in the
model. Variability was introduced by perturbing the positions of
individual neurons in the model between simulations. However,
the stochastic nature of transmitter release and the opening
and closing of ion channels is a source of noise in the real
cortex. This paper explicitly considers the effects of neural
noise on estimating visual stimuli. A Gaussian white noise
current was injected into the neurons in the model. The noise
contained in the cortical output was shown to be colored and
highly correlated even though the injected noise current was
white. A detection approach that uses a colored noise model
yields a better performance than does a model that assumes
white noise. Thirdly, this paper examines the effect of window
size on the encoding and decoding process.
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Fig. 1. Responses of model pyramidal cells. The traces in the left column show
voltage traces from three model pyramidal cells. The traces in the right column
show the smoothed spike rate of the same three cells.

II. LARGE-SCALE MODEL OF TURTLE VISUAL CORTEX

This study used the large-scale model of turtle visual cortex
that was described in detail by Nenadic et al. in [14]. In brief,
the model consists of 744 neurons in the visual cortex and 201
neurons in the dorsal lateral geniculate complex. Pyramidal cells
constitute the largest population of neurons in the cortex in the
model (679 pyramidal neurons); the remaining cells are two
types of inhibitory interneurons. Cortical neurons are distributed
in a two-dimensional array that captures the spatial distribu-
tion of the three major populations of cortical neurons. Each
cortical neuron is represented by a multicompartmental model
based on the anatomy and physiology of that type of cortical
neuron. The soma compartment of each model neuron contains
voltage-gated conductances sufficient to generate action poten-
tials. These currents are specified by Hodgkin-Huxley equa-
tions. Excitatory and inhibitory synaptic conductances establish
interactions between individual neurons. Geniculate neurons are
modeled as single compartments with ionic currents that gen-
erate action potentials following the injection of a stimulating
current in the neuron. Generation of an action potential produces
a signal that propagates across the model cortex with a velocity
based on the known conduction velocity of geniculate afferents.
Stimulation of points along the left, center, and right edge of the
horizontal meridian of visual space was simulated by electrical
activation of clusters of 20 geniculate neurons situated at the
left, center and right edges, respectively, of the line of genicu-
late neurons. Stationary stimuli were simulated by presenting a
150 ms square current pulse to each of the geniculate neuron in a
cluster. A zero-mean Gaussian noise current with a standard de-
viation of 4 nA was injected into each neuron. The left column
in Fig. 1 shows the spike trains of three representative pyramidal
neurons in response to a left stimulus. The right column shows

Fig. 2. Responses of the cortical model. This figure shows selected frames
from the spatio-temporal response of the model in response to a left stimulus.
Color scale indicates smoothed membrane potential. The values near the color
bar are in millivolts. Times indicate time elapsed from stimulus presentation.

the smoothed spike rates of the same three neurons (see the
Appendix I for details). In this example, a movie of the whole
cortical response to a stimulus was constructed by spatial in-
terpolation of the voltage values between neurons at each time,
. Fig. 2 shows nine snapshots from a representative movie. A

total of 100 sample waves were generated for each of the three
stimulus locations. In this paper, “wave” and “movie” are used
interchangeably to refer to the spatio-temporal response signal
of the cortex.

III. LOCALIZING INFORMATION USING

WINDOWING TECHNIQUES

Nenadic et al. [11] showed that analysis of a movie lasting
1500 ms produced a single point in the B-space. It is reasonable
to expect that the value of this point might depend upon
the length of the movie analyzed. For example, very short
segments of the cortical responses may not contain enough
information to reliably estimate the position of a stimulus
in visual space from the dynamics of the cortical response.
Analysis of a short segment of the corresponding movie should,
then, produce a point in B-space different from the point that
results from analysis of a longer segment of the movie. In
this study, the two-step decomposition developed in [11] was
modified to analyze segments of the cortical response using
sliding encoding window techniques. As shown in Fig. 3, the
time axis was covered by equal-length, overlapping encoding
windows and the double KL-decomposition was applied to the
segment of the spike rate signal within each window. Both
the starting and ending times of the windows changed while
the length of the window remained constant. Each segment
of the cortical wave was, thus, mapped to a point in B-space.
Plotting images of successive windows produced a sequence
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Fig. 3. Encoding window. The time axis is covered by equal-length,
overlapping, sliding encoding windows. Both the starting and ending times of
the windows slide over the time axis while the length of the window remains
constant. a is the amount of time that the window slides and w is the width of
each encoding window.

Fig. 4. Decoding windows applied over the �-strand representation of cortical
waves. T and T are the starting and ending time of the detection windows
respectively. T is the width of the detection window. The amount of time that
the detection window slides is equal to st. (Top) EDW with increasing duration.
The starting time remains the same atT = 1ms while the ending time changes.
(Bottom) SDW with equal duration. Both T and T slide over the time axis.

of points, or -strand (see Fig. 6). This is a vector-valued
function of time and is an alternative way to represent the
original movie in a space with a much lower dimension. In
the decoding process, we used EDW and SDW techniques to
cover the -strands and applied detection theory to the -strand
segment within each detection window (see Fig. 4). For EDWs,
the detection algorithm was applied to a series of time windows
of increasing duration. The starting time remained the same
at ms while the ending time changed. For SDWs,
the detection algorithm was applied to a series of SDWs of
equal length. Our motivation in considering these two cases
was to address two potential mechanisms by which the cortex
processes information. SDWs represent the possibility that the
cortical information processing system has a transient memory
mechanism of very short duration, equal to the width of the
detection window. EDWs, on the other hand, represent the
possibility that information accumulates in the cortex over
a relatively longer time window. In particular, we analyzed
the extreme case when the system remembers the entire past.
We next describe the process of encoding cortical waves and
decoding them from their -strand representations.

A. Encoding Cortical Waves With Strands

For a particular input stimulus, let
denote the smoothed spike rate of the cell as a

spatio-temporal response signal, where is time and is the

index of the pyramidal neuron. can be viewed as a matrix.
The th row represents the spike rate of each neuron at time in
response to a particular stimulus. The th column corresponds
to pyramidal neuron . Let the length of each time window
be and let
be the response signals for different time windows. Here
is the amount of time that the encoding windows slide (see
Fig. 3). Let denote the total number of cortical response
movies in response to stimuli in the left, center, and right visual
field. For the th, movie, the spatio-temporal
signal in this time window can be viewed as a collection
of vectors where

. The dimensionality of
the cortical response is reduced by two KL transforms into
A-space and B-space, respectively. We first describe the KL
transform into A-space. The covariance matrix
for a family of movies is calculated as

(1)

where is the transpose of . The matrix
is symmetric and positive semi-definite, so its eigenvalues are all
real and nonnegative and the corresponding eigenvectors form
an orthonormal basis in . The eigenvectors corresponding to
the largest eigenvalues of are called the principal eigen-
vectors, or modes, and the th-order successive reconstruction
of the spatio-temporal signal is given by

(2)

where is the th principal mode, the time coeffi-
cients are given by
and stands for the standard inner product. The coefficients

of the KL-decomposition are uncorrelated in terms
of and we call the

th-order A-space representation of the movie segment within
the corresponding time window for the th movie. The vector
function

(3)

can be viewed as a sample function of a vector random process
since the model cortex is disturbed by random noise. Statistical
analysis of a random process can be facilitated if the process is
further parameterized using a second KL decomposition. Let

...
...

(4)

where . Calculating the covariance matrix as in
(1), we have

(5)
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Fig. 5. Weighting coefficients for B space representation. This figure shows
the first 30 (out of 300) � components of the B space representation of
a particular movie within time window 211–220 ms. The components are
ordered in terms of the descending eigenvalues of the correlation matrix C
in (5). The horizontal axis represents the indices of the � components and
the vertical axis represents the value of the � components. It is clear that the
first few components can represent most of the information contained in the
complete � vector.

The th-order successive approximation of the th vector is
given by

(6)

where are the eigenvectors corresponding
to the largest eigenvalues of the matrix . The coefficients

are found by orthogonal projection of onto the th
eigenvector . In our case, each vector has 300
components and is referred to as the B-space representation
of the cortical movie within the corresponding time window.
Fig. 5 shows, in the descending order of the eigenvalues of ,
the first 30 -vector components corresponding to time window
211–220 ms of a left-input movie generated by a flash of light
from the left. Clearly, a few components capture most of the
information contained in the original movie since the rest of
the components are close to zero. Repeating the above data
processing procedure for all the sliding encoding windows of
a movie produces a -strand as a vector-valued function of
time. We refer to this -strand as the B-space representation
of this movie. By discarding those components that are close
to zero, we obtain a low dimensional representation of the
original movie segment. If, for each sliding encoding window,
the first components of each vector are used, we say that
the vector consisting of these components is the th-order
B-space representation of the movie. The statistical mean of
the -strands of the left-, center-, and right-stimuli movies can
be easily obtained.

In our analysis, we used
. The values of were chosen to be . Fig. 6 shows

the mean -strand for 100 presentations for stimuli presented at
the left, center, and right clusters of geniculate neurons.

B. Decoding From the Strands

In this section, we show that -strands contain information
about the location of the input stimulus. Consistent with the

Fig. 6. Mean third-order B-space representation of cortical responses. This
figure shows the mean � strands for cortical responses to left, center and right
stimulus. Each strand is the statistical mean of the �-strands resulting from 100
responses to each stimulus. The axes represent the values of the components
of the � vectors. Each �-strand starts from near the origin, curves around and
finally returns to the origin when the cortical waves die out. Herew = 10. Note
the temporal evolution of the distance between the �-strands.

idea of localizing information in time, we detect the location
of the visual stimulus based on different segments of the

-strands. Each segment is a detection window. We now des-
ignate the mean -strands for the left, center, and right stimuli
by , and , respectively. Let be the -strand
of an arbitrary cortical movie in response to a stimulus from an
unknown location. We assume that the location of the stimulus
is unknown, but restricted to either left, center or right. Finally,
we denote the start and end times of the detection window as

and , respectively, so is the size of the
detection window.

Intuitively, discriminating the three stimuli from each other
should be easiest when the three mean -strands

are farthest from each other. The distance between two
-strands can be calculated as:

(7)

where is the index to the components of .
Fig. 7 is a plot of this distance as a function of for the SDW
technique with ms. The curves represent

, and , respectively. All three distances
reach their peaks between – ms and then decline.
Since the origin of the wave has a latency of approximately
20 ms after stimulus presentation, these plots suggest that the
information content of cortical waves reaches a maximal value
180–280 ms after the onset of the wave. The further apart the
average -strand segments of are, the easier
it is to discriminate an arbitrary -strand. Fig. 7 indicates that
180–280 ms will be the time period when the discrimination is
most reliable, which is confirmed by the detection results de-
scribed next. It is worth mentioning that the distance between
left and right -strands is smaller than that between center and
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Fig. 7. Distance between the corresponding segments of two average
�-strands vs. ending time, T . Here, the distance is calculated using (7) and T

and T are the starting and ending time of SDWs.

right -strands. This is an indication that the physical separa-
tion between visual stimuli might not necessarily be translated
to the separation of the -strands. How they are actually related
is unknown at this moment and requires further investigation.

Replacing by , the -strand representation of
an arbitrary wave (generated from an input whose location
is unknown, but restricted to left, center, or right), in (7),
we obtain , and as the distance between and

respectively as follows:

(8)

for . Our goal is to find out which of the three
-strands is closest to the strand . The smallest of

the three distances indicates the location of the input
stimulus, i.e., if is the smallest, there is a high probability
that the stimulus is from the left, and similarly for and
the center, right stimuli, respectively. Fig. 8 shows , and

for each of the 300 movies. Identifying the correct input
stimulus for a given movie is easiest when one of the distances
is closest to zero and the other two are significantly larger. The
reliability of the discrimination is quantified in Fig. 12(A)–(B)
which shows the probability of a detection error for the EDW
and the SDW technique respectively.

IV. EFFECT OF NOISE

Biological noise was simulated by injecting a Gaussian white
noise into the cortical neurons. With noise present, a rigorous
approach is to formulate the problem of detection as a hypoth-
esis testing problem. Let the three types of stimuli correspond
to three hypotheses. denotes the hypothesis that the stimulus
is from the left; denotes the hypothesis that the stimulus is
from the center; denotes the hypothesis that the stimulus is
from the right. Let us write

(9)

Fig. 8. Results of detection by distance. The horizontal axis is the indices of
the cortical movies. Movies 1–100 correspond to a left stimulus, 101–200 to
a center stimulus, and 201–300 to a right stimulus. The vertical axis shows the
distance d ; d , and d as defined in (8) for each of the 300 movies. d is shown
in blue, d in red and d in green. The time above each figure represents the
starting and ending time of the detection window. (Left) Results obtained using
EDW technique. (Right) Results obtained using SDW technique.

where represents the vector-valued noise process contained
in the -strand with mean 0. To investigate the effect of noise on
detection performance, we solve the hypothesis testing problem
assuming that the noise is colored, Gaussian and compare the
results to that when the noise is assumed to be white, Gaussian.
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A. Series Expansion of Sample Functions of Random
Processes

The -strand, , can be regarded as a sample function of a
vector stochastic process. It is well known that a deterministic
waveform with finite energy can be represented in terms of a
series expansion. This idea can be extended to include sample
functions of a random process as well. In our case, we propose
to obtain a series expansion of the -strand within a chosen de-
tection window. This process involves finding a complete or-
thonormal set ( denotes the set of integers)
and expanding as:

(10)

where are vectors of the same dimension as . Let us
denote and to be the th component of the vectors

and respectively. In (10), l.i.m. denotes “limit in the
mean” which is defined as

(11)

where is the expectation operator. The coefficients , to be
defined next (14), are required to be uncorrelated with each
other. This is to say that, if , then we would like
to have

(12)

The value of has a simple physical interpretation. It corre-
sponds to the energy along the coordinate function, , in a
particular sample function. It is shown in [12] that if ,
then is the expected value of the energy along . Clearly,

for all . The complete orthonormal set is the so-
lution of the integral equation:

(13)

where , and is the co-
variance matrix of the noise process , i.e.,

. Here, and denote time and and denote
indices of the component of the vector noise process. In (13),
is called the eigenvalue of the noise process and is called
the corresponding eigenfunction. Once the coordinate functions

are obtained, one can project the sample func-
tion onto and obtain the coefficient
as

(14)

Recall from Section III-A that is the number of components
we choose for the B-space representation of the cortical movies.
The th-order representation of can then be written as a
vector .

Fig. 9. Decision space divided into three regions, H ;H , andH , in terms of
the logarithm likelihood ratio (15) and (16). H is the hypothesis that the visual
input is from left; H is the hypothesis that the visual input is from center; H
is the hypothesis that the visual input is from right. For any give �-strand r(t),
the region that the pair � (r(t)) and ln � (r(t)) fall into in the decision space
determines which hypothesis is true.

B. Hypothesis Testing

The proposed detection algorithm is based on computing con-
ditional probability densities and choosing a decision criterion
(see [12] for details). Commonly used decision criteria include
the Bayes and Neyman-Pearson criteria. In this paper, we use the
former for two reasons. The first is that the hypotheses are gov-
erned by probability assignments which we denote as

, i.e., hypothesis occurs with probability , hypoth-
esis with probability and hypothesis with probability

. The second reason is that a certain cost is incurred each time
an experiment is conducted. We propose to design our decision
rule so that on the average the cost is as small as possible. It is
demonstrated [12] that for a decision using the Bayes criterion,
the optimum detection consists of computing the logarithm like-
lihood ratio and comparing it to a threshold. If we assign the cost
of correct detection to be zero and that of a wrong detection to
be 1, the logarithm likelihood ratio can be computed (see [12,
Section 2.3]) as follows:

(15)

(16)

The decision regions in the decision space are determined by the
following threshold comparisons:

(17)

(18)

(19)

The associated decision space has been sketched in Fig. 9. For
a particular strand , we say that the hypothesis is true,
i.e., the stimulus is from the left part of the visual space, if the
logarithm likelihood ratio pair falls in region . Likewise, the
same can be said for and .

In Fig. 9, if , the dividing line between
regions and becomes the negative vertical axis, the di-
viding line between regions and becomes the diagonal
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line which is 45 degrees counterclockwise from the positive hor-
izontal axis, and the dividing line between regions and
becomes the negative horizontal axis. In the following discus-
sion, we assume that . The vector noise
process in (9) could be either white or colored and we ad-
dress these two cases next.

C. Decoding With Additive White Noise Model

If the vector noise process is white, i.e.,
, where is the identity matrix, and

is the Dirac function, the eigenfunctions of the noise process
turn out to be the orthonormalization of . So,
instead of solving the integral equation (13), we apply Gram-
Schmidt orthogonalization procedure on to
get as

where

and and are defined, respectively, as

The remaining consist of an arbitrary orthonormal set
whose members are orthogonal to and are
chosen so that the entire set is complete. We then project
onto this set of orthonormal coordinate functions to generate
coefficients as in (14). All of the except do
not depend on which hypothesis is true and are statistically
independent of . The mean values of depend
on which hypothesis is true: .
Note also that the coefficients are uncorrelated with
each other. Based on the Gaussian assumption, the logarithm
likelihood ratio (15) and (16) can be calculated as

Fig. 10. Detection results in the decision space by using white noise model.
Each point in the decision space is defined by the logarithm likelihood ratio
(15) and (16) and represents a cortical wave in response to an input of unknown
location. The region that the point falls in the decision space determines the input
location. The time above each figure represents the starting and ending time
of the detection window. (Left) Detection results with EDW. (Right) Detection
results with SDW.

Fig. 10 shows the decision spaces for estimates with the as-
sumption that is white. In each figure, each point in the
decision space represents a given cortical wave in response to
an unknown stimulus. Ideally, any point corresponding to a left,
center, or right stimulus should fall in the region of ,
or , respectively. Any point that does not fall in its corre-
sponding region in the decision space produces a detection error.
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Fig. 11. Detection results in the decision space by using colored noise model.
Each point in the decision space is defined by the logarithm likelihood ratio
(15) and (16) and represents a cortical wave in response to an input of unknown
location. The region that the point falls in the decision space determines the input
location. The time above each figure represents the starting and ending time
of the detection window. (Left) Detection results with EDW. (Right) Detection
results with SDW.

Performing the detection over a continuum of detection win-
dows and summing the total detection error for each detection
window yields the relationship between the probability of de-
tection error and detection window as shown in Fig. 12(C)–(D).

Fig. 12. Detection error probability vs. ending time T of detection windows.
T = 99 ms for the SDW technique. (A) Detection error probability of
EDW by detection-by-distance. (B) Detection error probability of SDW
by detection-by-distance. (C) Detection error probability of EDW by
detection-by-white-noise-model. (D) Detection error probability of SDW by
detection-by-white-noise-model. (E) Detection error probability of EDW by
detection-by-colored-noise-model. (F) Detection error probability of SDW by
detection-by-colored-noise-model.

D. Decoding With Additive Colored Noise Model

If the noise process is colored, i.e., the matrix
has nonzero off-diagonal elements, we solve the

integral equation (13) for and , project onto , and
compute the logarithm likelihood ratio (15) and (16) as follows:

where is the number of series expansion coefficients that are
chosen to represent . Fig. 11 shows the decision spaces for
estimates obtained using the EDW technique (left column) and
the SDW technique (right column) with ms. Interpre-
tation of each figure is the same as that of the figure in Fig. 10.
The detection performance is quantified in Fig. 12(E)–(F).

V. DETECTION PERFORMANCE ANALYSIS

Fig. 12 shows that both the EDW and SDW techniques permit
reliable estimates of stimulus position for the first 400 ms of the
movie, regardless of the approaches used. However, a major dif-
ference between the two techniques is that the reliability of the
estimates decreases significantly for time windows after 400 ms
when the SDW techniques is used, but continues to be relatively
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high after 400 ms when the EDW technique is used. For the
detection-by-distance approach, Fig. 12(A)–(B) shows that the
detection error probability is close to 0 up to 600 ms with the
EDW technique. It increases after 600 ms, but only to a value
of 0.07 at 900 ms. The detection error probability is close to
0 for time up to 400 ms with the SDW technique, but then in-
creases dramatically to more than 0.4 at 900 ms. This difference
is shown more dramatically in Fig. 12(E) where the analysis
with the EDW technique and the assumption of colored noise
indicates that estimates that are correct with nearly 1.0 proba-
bility can be obtained even when the wave has almost returned
to baseline at 900 ms. For the detection-by-white-noise-model,
Fig. 12(C)–(D) indicates that the probability of detection error
is low for the first 550 ms using EDW technique and for the
first 400 ms using SDW technique, but then increases. However,
the probability is only 0.07 even toward 900 ms of the response
using the EDW technique.

For the EDW technique, the detection error starts with a
nonzero value. It decreases with the ending time of the detection
window and reaches zero at about 100, 100, and 60 ms using the
detection-by-distance, the detection-by-white-noise-model, and
the detection-by-colored-noise-model approach, respectively.
This error-free detection breaks down at about 600 and 580 ms
for detection-by-distance and detection-by-white-noise-model
and increases from then on. For detection-by-colored-noise
detection, the error-free detection breaks down after 900 ms.

It appears that the waves can be used to reliably discriminate
stimuli positioned at opposite edges of the visual fields using
windowing technique and hypothesis testing. It is striking that
the detection performance with the EDW technique is very re-
liable at the very late stage of the cortical response. However,
it is important to note that the discrimination task used in this
study is not very demanding and probably does not challenge
the information coding capabilities of the waves. It should also
be noted that the results reported here and by Nenadic et al. [11]
show that information is encoded in the cortical waves, but do
not demonstrate that the turtle actually uses this information for
behavioral tasks.

VI. EFFECT OF WINDOW SIZE

Finally, we examine the effect of the size of the encoding and
decoding window on detection performance. The detection re-
sults we have seen in Fig. 12 were obtained using an encoding
window size, . Detection with other encoding window
sizes is shown in Fig. 13(A)–(D) where detection is performed
using the EDW technique with the colored noise model. Detec-
tion based on encoding window sizes is compared
with that based on . For all the analyzes,

are used. The figure shows that, for the discrimination task
described in this paper, a larger encoding window yields a better
detection performance at the early stage of the cortical response,
probably because of the larger information content in a larger
detection window. After the wave is developed, the detection
performance is not very different with different sizes. This is
probably because the discrimination task used in this study was
not very difficult. The effect of the size of the SDW shown in
Fig. 14 lies in the difference in the time when the detection can

Fig. 13. Relationship between the detection error probability and size of
encoding window. Detection was performed using EDW technique with the
colored noise model. The horizontal axis denotes ending time T (ms) of the
expanding detection windows and vertical axis denotes the detection error
probability. (A). w = 4; (B). w = 10; (C). w = 30; (D). w = 50.

Fig. 14. Relationship between the detection error probability and size of SDW.
All detections were performed using colored noise model and w = 10. The
horizontal axis denotes ending time T (ms) of the SDWs and vertical axis
denotes the detection error probability. (A). T = 6; (B). T = 12; (C). T = 50;
(D). T = 99.

start and the time when the error-free detection breaks down. A
smaller detection window makes it possible to start the detec-
tion earlier, but the error-free detection also ends earlier. Other
than this difference, the overall detection performance is similar
in terms of the detection performance dynamics and the actual
values of the errors.

Figs. 13 and 14 suggest that, for the discrimination task
addressed in this paper, neither the encoding nor the decoding
process requires a long time integration once the wave is de-
veloped. This might imply that neuronal data processing is
relatively local in time and that a relatively short-term memory
is adequate for the turtle to handle simple inputs. Larger en-
coding and decoding windows might give better detection
performance for more challenging tasks. However, (1), (5),
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and (13) suggest that, for larger encoding and decoding win-
dows, the calculation intensity is also heavier. Thus, there is a
trade-off between the detection performance and the computa-
tion intensity. Depending on the performance criteria, we can
choose an “optimal” encoding window and decoding window
(if the SDW is used).

It is worth mentioning that for encoding window size ,
the detection can not be performed at the very early stage of the
cortical response [see Fig. 13(A)]. This is due to a (eigenvector
of the noise process) which is close to zero while the cortex has
not been excited yet.

VII. DISCUSSION

A. Evolving Information Encoding in Cortical Responses

The classical approach to characterizing the coding properties
of neurons in visual cortex involves measuring the firing rates
of individual neurons over relatively long time windows. No-
tably, Hubel and Wiesel [15] have constructed orientation tuning
curves for neurons in the primary visual cortex of cats by plot-
ting the firing rates of neurons as a function of the orientations
of bars of light presented in the visual field of the cats. Studies
such as this demonstrated that cortical neurons code information
about sensory stimuli but provided no information about the dy-
namics of the encoding process. Several laboratories have now
examined the dynamics of the responses of individual neurons
in the primary or secondary visual cortices of cats or monkeys
using reverse correlation methods [16]–[23]. Other researchers
have studied the dynamics of responses using models of cortical
networks [24], [25]. All of these studies have shown that the re-
sponses of cortical neurons develop with time and, depending
upon the cortical area or species being studied, reach their peaks
somewhere between 50 and 150 ms following stimulus presen-
tation. Sharon and Grinvald [3] extended these results to pop-
ulations of neurons using voltage sensitive dye methods in the
secondary visual cortex of cats. The extent to which the selec-
tivity of neurons changes with time remains controversial. Some
research has reported that the selectivity of neurons to stimulus
orientation changes with time while others have found little or
no change in selectivity throughout the course of the response
(see [26] for a recent discussion of this controversy). However,
there is a strong consensus that the response develops with time.

The simulations reported in this study are consistent with the
findings in mammalian visual cortex in showing that the cor-
tical responses to activation of different clusters of geniculate
neurons in our large scale model of turtle visual cortex develop
with time. The -strands corresponding to stimuli present at the
left, right or center edge of visual space are initially close to each
other in B-space but are maximally separated at about 180 ms
following stimulus presentation. They then approach each other
as time proceeds and are again close by about 900 ms. The time
courses in the model [14] and real cortices [10] are observed to
be similar in terms of both wave origination and propagation.
In the model, the wave begins to form in the rostral pole of the
cortex with a latency of about 20 ms following stimulation of
the geniculate neurons. It propagates across the cortex, reaching
the caudal pole by about 200 ms after stimulus onset. It then de-
cays slowly back to the baseline activity of the cortex by about
900 ms following stimulus onset.

The detection results shown in Figs. 8, 10, and 11 and the
detection performance shown in Fig. 12 also indicate that the
information content of the cortical waves is a dynamic variable
whose temporal evolution is demonstrated in the detection error,
the distance between and the spread of the clusters in the deci-
sion space. Fig. 7 shows that this information content reaches
a maximal value between 180–280 ms following the origin of
the wave and the most reliable estimates of stimulus position
occur while the wave is propagating across the cortex. Fig. 12
shows that there is clearly an advantage to the detection system
during the time period that the -strands are maximally sepa-
rated and less of an advantage before and after. Furthermore,
even when the detection error is very low, the distance between
and the spread of the clusters in the decision space vary. This is
another indication of the temporal evolution of the information
content in the cortical waves. Each cluster spreads in different
directions, but whether or not this has any significance is un-
known at this moment.

The fact that detection, based on very early stage of the
cortical response (0 to about 80 ms), is unreliable is due to
a lack of sufficient information in the chosen time windows.
The asymptotic increase of detection error in the late stages
of the cortical response can be attributed to an increase in the
signal-to-noise ratio of the response signal. After about 600 ms,
the cortex is dominated by noise. An information-theoretic
analysis of the cortical waves has been performed [27], wherein
the Kullback-Leibler distance [28] was calculated between
waves generated by two different stimuli. Plots of the cumula-
tive Kullback-Leibler distance as a function of time have shown
that the information content of the waves increased rapidly
from 100 to 200 ms following stimulus onset and then slowly
reached a plateau over the subsequent 600 ms.

B. Effect of Noise on Decoding

Visual cortex has intrinsic noise sources due to the stochastic
properties of chemical synapses and voltage-gated channels
(See [29] for a discussion of noise in neural systems). Intrinsic
noise was introduced in the model used in the present study
by injecting a Gaussian white noise current into individual
geniculate neurons in the model. Analysis of the power spectra
of the -strands indicated that the cortical responses contained
a colored noise. This is not surprising given that the kinetics of
the voltage-gated channels can be expected to act as nonlinear
filters and the dendritic integration is strongly nonlinear as well.

A recent study [30] has focused on the possibility that cortical
neurons exhibit a form of stochastic resonance whose role is to
amplify the signal-to-noise ratio of cortical responses to weak
input stimuli. The analysis presented here has addressed the
issue of whether or not the additive noise eventually improves
the reliability of estimates. The main conclusion of our analysis
is that by assuming the additive noise is white, the decoding
algorithm is at best similar to a decoding algorithm that does
not assume any noise model (detection-by-distance approach).
However, the algorithm improves considerably by assuming that
the noise source is additive and colored. We do not make any
explicit claim that any of these noise models are actually being
used by the animal.

It is worth mentioning that the cortex model used in this paper
has a high noise level. The cortex shows a high level of spiking
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Fig. 15. Block diagram of spike train filtering.

activity when only a noise input is present and increasing the
noise level even further would be unrealistic. It is almost certain
that the detection error probability will decrease when the noise
level is decreased.

APPENDIX I
FILTERING OF SPIKE TRAINS

Each spike train of the cortical cell was preprocessed before
the double KL decomposition and detection operations were
performed. Fig. 15 illustrates this preprocessing procedure as
follows:

A) The membrane voltage of each cell was thresholded and
a spike was considered to have occurred when the voltage
exceeded the threshold. The threshold was set at
and volts for lateral and medial pyramidal cells,
respectively. Each occurrence of a spike was represented
as a 1.

B) Each spike was then represented as a unit pulse of width
0.5 ms. Since the refractory period of spike generation is
10 ms, adjacent unit pulses do not overlap with each other.

C) The train of unit pulses was passed through a second-
order filter. The output from the filter can be considered
as equivalent to the spike rate signal of the corresponding
cell.
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