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1 Introduction

Direction selectivity is an important feature of visual systems that has caught the

attention of neuroscientists for over 100 years [8]. Directionally selective responses

have been recorded by Hubel [10] in the primary visual cortex of an awake cat.

Subsequently, Barlow and Levick [3] studied direction selectivity in the retinal

ganglion cells of rabbits. Our interest in this paper is to study direction selectivity

as a part of our ongoing study of modeling the visual pathway of freshwater turtles.

In [16], we show that visual inputs produce waves that propagate across the visual

cortex of freshwater turtles and visual information is encoded in the cortical waves. In

all of our prior models the visual input was directly incident on the lateral geniculate,

completely bypassing the retina. The purpose of this paper is to add a model of the

retinal cell to the pathway and to study how retinal signals encode a moving point

target incident on a small retinal patch. The target is moving with a constant, possibly

unknown, velocity along directions that are spread across the entire 360○.

Turtle Retinal ganglion cells are either ON type, OFF type or ON-OFF type. The

ON type cells have an excitatory center and inhibitory surrounding. The OFF type

cells have an inhibitory center and excitatory surrounding. Finally the ON-OFF

type cells have an excitatory center, an inhibitory annulus followed by an outermost

excitatory surrounding (e.g. see [15]). Some of the turtle retinal cells are sensitive to

the direction of the optical flow of an image sequence, (e.g. [1, 4]). These cells are

called, direction sensitive cells or the B cells. The other cells, which are not sensitive

to the direction of motion (but are sensitive to the intensity of the target), are called

the A cells. The A cells can be ON or OFF type, whereas, the B cells are ON-OFF

type. The A cells have a larger cell body (soma size) as well as a larger dendritic

arborization. This results in a larger receptor field, compared to the B cells (see [15]).

The A cells are smaller in number compared to the B cells on the turtle retina [18].

The turtle retina effectively encodes the motion parameters of moving targets in

its visual space (see [19]). The retinal ganglion cells encode input signals using a

sequence of spikes. We reproduce the spike generation process using a set of filters

which model layers of rods and cones in the retina. The A cells have a similar block

diagram except the directional filters are absent. The output of the filters are incident

on a single compartment spike generating neuronal cell, with primarily sodium and

potassium channels, modeled using Hodgkin-Huxley equations (see [9]). For a

physiologically detailed model of a single cell that includes many additional channels
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(such as transient AHP channel, sustained calcium channel, calcium dependent

potassium channel and transient calcium channel), see [7].

We consider a patch of the retina (see Fig. 1a) and circular targets that are moving

with unknown constant speed and motion direction (see Fig. 1b). Our objective is

described in the following two problems. In the first problem we consider targets

that are moving along an unknown direction with fixed speed that are assumed to be

known a priori. Our goal is to detect the motion direction of the unknown target. In

the second problem we assume that both the direction and the speed of the targets

are unknown. Our objective is to first estimate the speed and use this information

to detect the motion direction. We remark that the second problem is biologically

realistic but begin our analysis with the first problem because it sheds light on the

detectability of B cells in comparison to the A cells. The first problem is also a

prerequisite to solving the second.

(a) Cells on the turtle retina

�

(b) Paths of the incident light spot

Figure 1: (Left) Distribution of all cells on the retina showing the visual streak. The

circle on the center of the streak indicates the location of the retinal patch. (Right)

The input to the retina is a circular spot of light moving from one end of the patch to

the other in a straight line.

Two methods to detect the unknown motion direction of the target are now described.

In the first method, we use Principal Component Analysis (PCA) (see [16], [11]). The

spike sequence generated by each cell in the model patch is low pass filtered using a

second order linear filter. The filter output is a continuous signal that approximates

the spike rate of the corresponding cell in the patch. The vector of spike rate functions

over a suitable time window are projected as points on a cartesian coordinate system

using PCA. We model these points as realizations of a Gaussian process, conditioned

on the direction of motion, and detect the target motion direction using the well

known Maximum Likelihood Estimation Method ([22]). In the second method we

hypothesize that the pattern of spiking activity in a cell can be described by a class

of point process, called Self Exciting Poisson Process (see [20]). We use the fact

that a collection of such processes can be pooled together, and under an appropriate

hypothesis (see [20]), can be modeled as an inhomogeneous Poisson Process. We
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pool together the spiking activities of a subpatch of cells in a patch and represent the

pooled activities as an inhomogeneous vector Poisson Process. We estimate intensity

functions for each component of this process, conditioned on the input direction

of the target. The direction of motion of an unknown input can be detected using

estimates of the intensity function vector.

2 Retinal cell modeling and construction of a retinal patch

Turtles, being vertebrates, have a multi layered retinal structure. From the point of

view of visual signal processing, it has layers of photoreceptive cells consisting of

cones and rods. These cells are synaptic to a layer of ganglion cells which give rise

to the optic nerve fibers (see [19]).

We model the layer of photoreceptive cells as a cascade of filters which represent key

functions, including the spatial and temporal variation of the receptor field (see [5])

and direction selectivity only for the B cells (see [4]). The ganglion cells are modeled

as firing neurons using the Hodgkin-Huxley (HH) model calibrated with parameters

from [13] and [14]. Noise is modeled as a zero mean Gaussian current input to the

HH model. In the following subsections the function of the major components of the

filter model are described. This model was originally reported by Baker [2] and we

refer the reader to [7] for details.

The ganglion cells on a turtle retina are distributed in such a way that it is possible

to observe a high density of cells along a line called the visual streak. The spatial

distribution of turtle ganglion cells on the retina has been studied in [17]. It reports

the cell density over a multitude of vertical and horizontal transects as to cover the

entire retina. We interpolate the data provided using a two dimensional cubic spline

to compute the cell density (both A and B types combined) over the whole retina.

In a subsequent paper [18], the distribution of the size of ganglion cells at some

selected sites of the retina has been detailed. By inspecting this data, we can conclude

that the histogram of the cell body size is bimodal. We fit this histogram data with

sum of two Gaussian distributions. Additionally, we observe from [15], that the A

cells have a large soma size compared to B cells. Therefore, we claim that in the

bimodal distribution, the A cells are distributed with higher mean cell size and the B

cells are distributed with lower mean cell size. The percentage of A cells calculated

at each site are interpolated over the entire retina using a two dimensional cubic

spline. Multiplying the percentage of A cells with the cell density data calculated

as above, we obtain the distribution of A cells over the entire retina. This procedure

is repeated for the B cells. Fig. 1a shows the distribution of the entire population of

retinal ganglion cells.

Since the turtle retina has 350–390 thousand cells, we use about 1% of that for

constructing large-scale models of the full retina. The majority of cells are B cells.

The B cells are divided into three equal groups, corresponding to three distinct

direction preferences. The A cells are divided in to two equal groups based on their

receptor field structure, known as the A-ON and the A-OFF. The three groups of the

B cells and the two groups of A cells are randomly sprinkled over the retina to match

the computed density functions.
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A circular retinal patch has been used to obtain results reported in this paper. The

patch is taken to be the cells which are contained in a three millimeter circular disc

centered at the location with maximum cell density on the visual streak. It has a

total of 520 cells, of which 54 are A-ON cells and 55 are A-OFF cells. The B cell

counts are 134, 136 and 141 for the three angle preferences of 180○, 40○ and −75○

respectively. These are the means of the groups of directional sensitive cells reported

in [4].

3 Two simulations using the retinal patch

In this section we detail two different yet related simulations on the model retinal

patch. In the first simulation we collect data to determine the unknown motion

direction of a point target assuming that the speed of the target is known. In the

second simulation we collect data to estimate the speed and use this information to

detect motion direction of a point target assuming that both of these parameters are

unknown. In both simulations the input is a spot of light on a dark background. The

patch is circular of diameter three millimeters and the size of the spot is one tenth the

size of the patch.

In Simulation I, we consider a circular retinal patch (shown in Fig. 1a) and assume

that a point target moves with a constant velocity through the center of the patch. The

target takes 0.8 seconds to cross the patch. The simulation pool consists of motion

directions between 0○ (i.e. the target moves from left to right) and 358○ at steps

of 2○. It follows that we have 180 different directions of motion. The objective of

this simulation is to study how different cell types discriminate directions of motion.

Simulation I is repeated twice, once under the assumption that the B cells have a

perfect knowledge of θ . In the second instance, we assume that the B cells are able to

observe θ up to a random variable θ
∗. Each motion direction is simulated 60 times

in the first instance. For the second instance, the directions are simulated 30 times.

In Simulation II, we use twelve different angles from 0○ to 330○ at steps of 30○. We

have the target move along each direction at nine different speeds. As the speed varies,

the target takes between 0.4 seconds to 2 seconds to diametrically cross the patch. In

all, we have 108 different speed/angle combinations (i.e. 108 different velocities).

Each combination is simulated 60 times. In addition to these evenly spaced simulation

points, we also generate intermediate test points with five intermediate speeds and 60

intermediate angles. These intermediate points are each simulated 10 times.

4 Two main tools for analysis

The two main tools for analysis we use are derived from the PCA [11] and the Models

PPM arising from self exciting point processes [20]. In the Simulation I, the activities

of the cells in the patch are low pass filtered individually. The smoothed activity

functions are represented using PCA by considering the entire patch as the spatial

window and over a suitable sliding time window. The spatiotemporal activity of

the retinal patch is thus represented as a strand conditioned on the target direction.

Maximum likelihood detection is performed (see Van Trees [22]) assuming that the

strand is a Gaussian random process. The details are similar to what had been done

by Du et. al. [6] on the turtle visual cortex. Alternatively, in the PPM approach, the

spike activities of the cells are pooled over a subpatch and the intensity function of
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the pooled process, a Poisson Process, is computed. This step is repeated over a

vector of subpatches. The obtained vector of intensity functions is now used to detect

the target motion direction.

In the second simulation, the speed of the target is estimated from the intensity

function of the pooled spike activities. The pooling process is similar to what was

described for the first simulation. The speed estimation is carried out from the half

height pulse widths of the associated intensity functions. Using the estimated speeds,

the target directions are inferred as follows. The intensity functions are first computed

over a vector of subpatches and are subsequently rescaled, using the estimated target

speeds, to be distributed over an unit length in seconds. The target motion directions

are detected from the rescaled intensity functions using PCA over each subpatch.

The PCA is carried out over a moving time window and we assume that the principal

component points form a Gaussian process. Over every subpatch, target detection

is carried out by running a maximum likelihood detection algorithm for Gaussian

processes (as performed for data in Simulation I). The final target direction is inferred

using a majority vote over the subpatches (see [12, 21]).

5 Results

In addition to providing a model of the A and B cells, one of the main result of

this paper is to illustrate the extent to which retinal cells are able to detect direction

of target motion. The B cells out-perform the A cells in terms of their ability to

discriminate motion direction, measured using Root Mean Square of the detection

error. This fact is entirely obvious along the preferred direction of the directionally

selective B cells. A priori, it is not clear why an ensemble of three directionally

selective families of B cells would have a superior performance for targets moving

along any direction. The superiority of the B cell performance over A cell, is

particularly enhanced when the target speed is assumed to be unknown. In this case

the speed is estimated from the retinal response data. Finally as a population, the B

cells out-perform the A cells, even when B cells observe the target direction upto a

large noise variance of (∼ 30○).

For Simulation I, it can be observed from Fig. 2b on the next page that the direction

sensitive B cells detect motion directions with less error close to their preferred

directions. If we consider the B cells together (shown in Fig. 2a on the next page),

then the detection error is constant throughout all the motion angles. A cells, on

the other hand, do show a higher level of detection error and some amount of

variability with the motion direction. We suspect that this variation is purely due

to the distribution of A cells in this specific patch under consideration. In Figs. 3a

and 3b on page 121 we plot the Root Mean Square Error using PPM. The displayed

results are obtained using a 20 ms window and the window starts at 400 ms, the mid

point of the motion of the target in visual space. Fig. 3a clearly shows the effect of

direction sensitive B cells. They out-perform the A cells in terms of having a lower

Root Mean Square Error of detection. Also note from Figs. 2a and 3a that, when all

three direction preferences of the B cells are taken together, the overall Root Mean

Square Error is much lower than any single type and it remains constant over all

motion directions.
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(b) PCA - B cells

Figure 2: Root Mean Square Error of detection using Principal Component Analysis

(PCA) for Simulation I.
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(a) PPM - All cell types
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(b) PPM - B cells

Figure 3: Root Mean Square Error of detection using Poisson Process Model (PPM)

for Simulation I.

121



Festschrift in Honor of Uwe Helmke M. P. B. Ekanayake et al.

We have omitted (see [7]) discussing the problem of estimating the speed and motion

direction using Simulation II. When the speed is unknown and is estimated from the

data, the root mean square error for motion direction is larger compared to what is

observed in Simulation I. This fact has been illustrated in Figures 4 and 5 where the

root mean square error has been plotted as a function of time as the target enters the

patch at different speeds.
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(a) High Speed

Figure 4: For Simulation II variation of the Root Mean Square Error of detection

over rescaled time using all cells (blue), A cells (red) and B cells (green). Original

high speed takes 400 ms to cross the patch, medium speed and low speed are shown

in Figure 5.

6 Conclusion

Using Root Mean Square of the detection error as a criterion for measuring detectabil-

ity, we show in this paper that – for the purpose of discriminating motion directions of

targets, the direction-selective B cells are superior compared to the intensity sensitive

A cells along their preferred direction, with no particular advantage along the null

direction. Taken as a collection, B cells with three specific preferred directions

(observed in the turtle retina) have a superior performance compared to the A cells for

any target direction. The performance of a B cell family remains relatively unaltered

under noisy conditions even when individual B cells observe target directions up

to a zero mean Gaussian random variable with a large angular variance. All the

above properties remain qualitatively intact when the speed of the target is uncertain,
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(a) Medium Speed
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Figure 5: For Simulation II variation of the Root Mean Square Error of detection

over rescaled time using all cells (blue), A cells (red) and B cells (green). Original

high speed (Figure 4) takes 400 ms, medium speed (top) takes 1200 ms, low speed

(bottom) takes 2000 ms to cross the patch.
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although the actual values of the RMS errors rise. In this case we show that the RMS

error can be decreased by using a voting algorithm that combines detection across

multiple subpatches. All the claims made in this paper have been verified using two

distinct decoding algorithms – the PCA and PPM.
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