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Synaptic Adaptation and Sustained Generation of
Waves in a Model of Turtle Visual Cortex

Zachary V. Freudenburg*, Bijoy K. Ghosh, Fellow, IEEE, and Philip Ulinski

Abstract—Both single and repeated visual stimuli produce
waves of activity in the visual cortex of freshwater turtles. Large-
scale, biophysically realistic models of the visual cortex capture
the basic features of the waves produced by single stimuli.
However, these models do not respond to repetitive stimuli due
to the presence of a long-lasting hyperpolarization that follows
the initial wave. This paper modifies the large-scale model so
that it responds to repetitive stimuli by incorporating Hebbian
and anti-Hebbian learning rules in synapses in the model. The
resulting adaptive model responds to repetitive stimuli with
repetitive waves. However, repeated presentation of a stimulus
to a restricted region of visual space produces a habituation in
the model in the same way it does in the real cortex.

Index Terms—Synaptic Adaptation, Turtle Visual Cortex, Heb-
bian Learning, Large Scale Cortex Model.

I. INTRODUCTION

V ISUAL stimuli evoke a wave of activity that propagates
across the visual cortex of freshwater turtles. The waves

have been demonstrated in vivo [1], [2], [3] and in a reduced
eye-brain preparation using both multielectrode arrays and
voltage sensitive dyes [4], [5], [6]. The basic dynamics of the
waves are stereotypical: the wave originates near the rostral
pole of the cortex and propagates across the cortex to its
caudal pole. In most cases, a secondary wave, or reflection,
occurs at the caudal pole of the cortex and propagates back
into the cortex. However, there are detailed differences in the
spatiotemporal dynamics of the wave that can be detected
using a variant of principal component analysis. Such analyses
demonstrate that information about the positions of stimuli in
visual space and the speeds of moving stimuli are encoded in
the dynamics of the wave [7]. Propagating waves also occur
in large-scale, biophysically realistic models of turtle visual
cortex [8], [9]. Emphasis in the models was put on capturing
major features of the special distributions of the neurons and
geniculate afferents and the physiology of cortical neurons in
the cortex that govern the propagation patterns of waves. These
models contain approximately 800 cortical neurons and 200
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neurons in the dorsal lateral geniculate complex, which form a
large enough model to capture the wave features while keeping
the computational complexity manageable. Models of each of
the four major populations of neurons in the cortex were based
on detailed anatomical and physiological data. The geniculate
neurons were simple spike generators that provided inputs to
the cortical neurons. The spatial distribution of neurons in
the cortex, the connections between cortical neurons and the
geniculate afferents within the cortex were based on the known
anatomy. Simulated light flashes, stationary spots of light, or
moving spots of light evoked waves in the model cortex that
accurately reproduced the waves seen in real cortices. Analysis
using the methods developed with the real cortices showed
that waves in the model cortex code information about visual
stimuli in the same way as do waves in the real cortex [7].

However, an important discrepancy between the behavior
of the real cortex and the model concerns their responses
to repeated stimuli. There is evidence from several in vivo
studies that turtle visual cortex responds to the presentation of
repetitive visual stimuli. First, Gusel’nikov and Pivovarov [10]
recorded both evoked potentials and intracellular responses
from the visual cortex of pond turtles. Stimuli consisting of
bars of various shapes and orientations were presented in
the contralateral visual field. Repeated presentations of the
same stimulus produced both extracellular and intracellular
responses that decreased in amplitude with each successive
presentation of the same stimulus. However, a strong response
could be elicited if the size or orientation of the bar was
abruptly changed. These experiments demonstrated a form
of habituation that is specific to the stimulus being used.
Second, Prechtl and Bullock [11] recorded from turtle visual
cortex using an array of microelectrodes. They presented 10
s sequences of relatively dim light flashes at frequencies of
1 Hz to 6 Hz that were followed by a relatively bright
stimulus. The cortex responded to each of the dim light
flashes, but responded with an enhanced response to the bright
flash. Finally, Prechtl and Bullock [12] recorded event related
potentials from turtle visual cortex while presenting trains
of 8 ms light flashes and found that a distinct, long-lasting
omitted stimulus potential occurred following cessation of the
stimulus train. All three of these experiments demonstrate
that turtle visual cortex shows forms of plasticity that are
associated with repetitive stimulation. However, these effects
are not seen in the models because wave propagation in the
models is followed by a long-lasting hyperpolarization that is
mediated by GABAB receptors and prohibits cortical responses
for several hundred ms after the wave has died out.

The models we have studied to date do not include any form
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of synaptic plasticity and can be called non-adaptive models.
The goal of this paper is to modify the non-adaptive large-scale
models by including forms of synaptic plasticity that allow the
model cortex to respond to repetitive stimuli. Plasticity was
implemented in this adaptive model using Hebbian and anti-
Hebbian learning rules. Incorporation of these learning rules
resulted in a model that does respond to repetitive stimuli.
Consistent with the Gusel’nikov and Pivavarov study, the
adaptive model habituates to continuous presentation of the
same stimulus. The adaptive model also codes information
about the positions of stimuli in visual space and the speed
and directions of moving stimuli in the same way as do the
non-adaptive models.

II. LARGE-SCALE MODEL

A. Structure of the Non-adaptive Models

Two versions of a large-scale model of turtle visual cortex
have been developed. Both use the Genesis neural simulation
software package [13]. Details of the first version are given
in Nenadic et al. [8]. This model contains two populations of
pyramidal cells (lateral pyramidal cells and medial pyramidal
cells) and two populations of inhibitory interneurons (stellate
cells and horizontal cells). It was used by Du et al. [14],
[15] in their studies of information coding in the cortex. The
second version contains all of the cells in the first version
as well as a third population of inhibitory interneurons, the
subpial cells [16]. Details of this model are given by Wang
et al. [9]. The input in both models consists of an array of
201 model neurons in the lateral geniculate nucleus. Figure 1
shows the spatial distribution of cortical and geniculate cells
in the large-scale model that includes subpial cells. Visual
stimuli are simulated by injecting 12 nA current pulses in all
of the geniculate neurons to simulate full field light flashes,
in a cluster of geniculate neurons to simulate localized light
flashes, or in a sequence of geniculate neurons to simulate a
moving spot of light. A Gaussian noise current with a mean
of 0 nA and a standard deviation of 4 nA was injected into the
soma compartment of each neuron to simulate general synaptic
noise in the model.

B. Synaptic Plasticity in the Adaptive Model

An adaptive version of the large-scale model was developed
for this study by adding a mechanism for synaptic plasticity to
the synapses between pyramidal cells and between inhibitory
cells and pyramidal cells to the non-adaptive models. (No
mechanisms for synaptic plasticity were incorporated in the
inhibitory synapses between subpial cells and between stellate
cells.) The cellular mechanisms that cause changes in synaptic
effectiveness in turtle visual cortex are not known, so no
attempt was made to model synaptic plasticity at the cellular or
molecular levels. Synaptic plasticity was, instead, represented
phenomenologically using Hebbian and anti-Hebbian learning
rules. The Hebbian learning rule is written as:

weight(t) = weight(t−∆t) + R[(pre(t)][post(t)]∆t (1)

where weight(t) is the weight of a synapse at time, t,
weight(t−∆t) is the weight of the synapse at time, t−∆t,

Fig. 1. Distribution of cells the model cortex. This diagram shows the spatial
distribution of all of the cells in the model cortex, including subpial cells. Each
type of neuron is represented by a different symbol. Representative geniculate
neurons are represented by boxes at the lower right edge of the cortex. The
trajectories of the axons of the neurons are represented by lines that fan out
across the cortex. The scales along the horizontal and vertical axes represent
distances in mm.

∆t is a differential time step, t is a discrete variable over
the modeled time period, R is a constant used to control the
modification time scale. The change in synaptic weight, ∆w,
for a given time step is

∆w/∆t = R[pre(t)][post(t)]. (2)

Changes in synaptic weights are determined by whether or
not activity in the presynaptic and postsynaptic cells are
synchronous or asynchronous. Synchronous rest will not cause
any weight change. Synchronous activity or suppression will
cause a weight increase, and asynchronous activity will cause
a weight decrease. Anti-Hebbian synaptic modification is
achieved by making the rate constant, R, negative. This
reverses the sign of the added weight and, thus, reverses the
effects of synchronous and asynchronous activities. The adap-
tation scheme for Hebbian and anti-Hebbbian modification
is summarized in Figure 2-A,B. For example, the synaptic
weight decreases if the presynaptic cell is hyperpolarized and
the postsynaptic cell is depolarized in the Hebbian learning
scheme, but increases in the anti-Hebbian learning scheme.

Activity can, in general, be either the spiking rates or
the membrane potentials of the cells. In the adaptive model,
activity is the membrane potential of the soma compartment of
the presynaptic or postsynaptic cell relative to a range of rest
values. For example, the upper bound of the postsynaptic rest
activity range is set to just below the soma membrane potential
at which spiking occurs. The lower bound is set to just below
the membrane potential induced by the injected noise current.
pre(t) and post(t) are, then, defined as:

pre(t) = presynaptic activity(t) −
nearest presynaptic rest activity bound

(3)

post(t) = postsynaptic activity(t) −
nearest postsynaptic rest activity bound.

(4)
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Activity above the upper bound of the rest level indicates
an active (depolarized) cell. Activity between the lower and
upper bounds of the rest level indicates the undisturbed state
of the cell. Activity below the lower bound of the rest level
indicates the suppressed (hyperpolarized) state of the cell.

Responses to repeated stimuli in the non-adaptive models
are inhibited by a long-lasting after-hyperpolarization that
follows the cessation of a wave. The goal of adding synaptic
adaptation to the model is to compensate for this after-
hyperpolarization and allow for future wave generation. Since
the waves are defined by pyramidal cell activity, the synaptic
adaptation scheme can be solely responsive to postsynaptic
pyramidal cell activity. Setting the presynaptic rest threshold
to a value less than the range of possible presynaptic activity
will cause pre(t) to always be positive. Thus, the value of
post(t) will control the sign of the weight change and whether
the weight is increased or decreased (Fig. 2-C,D). Excitatory
AMPA interconnections between pyramidal cells were shown
to play a major role in sustaining the cortical wave [9] and are
chosen to be anti-Hebbian. This produces increasingly larger
synaptic weights between pyramidal cells once the waves
have abated and the model enters the after-hyperpolarization
phase. On the other hand GABAA synaptic receptors between
inhibitory neurons and pyramidal cells were shown to play a
major role in wave cessation [9] and are chosen to be Hebbian.
This produces increasingly weaker inhibition of pyramidal
cells in response to the after-hyperpolarization phase. The net
effect of the connection scheme is that the adaptive model
enters a state that favors the generation of additional waves,
a pro-activity state, following the cessation phase of an initial
wave. Examples of activity in the model and weight states
during and after wave propagation are depicted in Figure 3.

The rate constant, R, allows for synaptic plasticity on differ-
ent time scales. A small rate value can be used to model long-
term synaptic changes and a large value can be used to model
a short-term synaptic adaptation. A negative weight value has
no biological significance, so a zero or positive lower weight
bound is enforced. An upper weight bound is chosen as twice
the non-adaptive synaptic weight value, allowing synapses to
essentially double their effectiveness. The weight bounds are
modeled as soft bounds that are approached exponentially by
modifying weight(t) directly as the weight nears a bound.
A zero weight represents an inactive synapse, but a synapse
can be reactivated if its presynaptic and postsynaptic cells
again become simultaneously active due to other influences.
Thus, a zero weight synapse is included for every pair of cells
that could become active. The scheme requires that changes
in synaptic weight take place on a time scale that is fast
enough to adapt to single wave propagation. The anti-Hebbian
synaptic weight adaptation response to an active and inactive
presynaptic and postsynaptic cell for a range of R values is
shown in Figure 4. A synaptic adaptation rate of 10 is used in
the adaptive model so that the synaptic connections adapt to
the activity level of the cortex on a time scale consistent with
the propagation of model waves.

Fig. 2. Hebbian and anti-Hebbian adaptation paradigms. Changes in synaptic
strength are represented in the Hebbian (A) and anti-Hebbian (B) learning
rules. Postsynaptic Hebbian and anti-Hebbian learning rules are represented
in (C) and (D) respectively.

Fig. 3. Pyramidal cell activity state and corresponding pyramidal-
to-pyramidal, stellate-to-pyramidal, horizontal-to-pyramidal, and subpial-to-
pyramidal synaptic weight states. Both pyramidal cell activity levels and
synaptic weight values are coded on a blue (low) to red (high) scale. Ten
percent of the total number of synaptic connections are shown. Top row:
Model hyperpolarized state following a wave propagation. Bottom row: Model
state during a propagation wave.

C. Data Analysis

Responses of the model to simulated visual stimuli were
recorded as Matlab movies. The movies represented a
triangle-based linear interpolation of the activity of non-
uniformly spaced pyramidal cells over a uniformly spaced grid
covering the model space (leftmost frames of Figure 3) at each
simulation time step. The movies were analyzed using a two-
step Karhunen-Loeve decomposition to project each movie
onto a three dimensional space that retains both spatial and
temporal dynamics of the model waves. This processes is
described in detail by Nenadic et al. [7] and Du et al. [14],
[15].

III. WAVE GENERATION IN THE NON-ADAPTIVE AND
ADAPTIVE MODELS

A. Non-adaptive Model

Figure 5-A shows the response of the large-scale model with
subpial cells, but without synaptic adaptation, to activation
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Fig. 4. Anti-Hebbian synaptic weight response to pre-synaptic and post-
synaptic activity for a range of adaptation rate values. This figures shows the
membrane potentials of a presynaptic and postsynaptic neuron and the changes
in synaptic weights between those two neurons for several values of the
adaption rate (R). A. Synchronized activity in the presynaptic and postsynaptic
cells. B. Unsynchronized activity in the presynaptic and postsynaptic cells.

of the 20 neurons at the right end of the row of geniculate
neurons. The top row of Figure 5-B shows a wave generated
by activating the 20 neurons at the left end of the row of
geniculate neurons. The general features of the waves are
the same in both cases. Both stimuli evoke a wave at the
rostral pole of the cortex that propagates across the cortex
to its caudal pole. It then subsides and is followed by a
long-lasting after-hyperpolarization. These cortical responses
can be divided into four phases for descriptive purposes. The
initiation phase extends from the first appearance of the initial
depolarization to the point in time at which the wave begins
to propagate. The propagation phase extends from the time
at which the wave begins to propagate to the time at which
it begins to subside. The cessation phase extends from the
time at which the wave begins to subside to the end of the
depolarization. The after-hyperpolarization phase is a long-
lasting period of hyperpolarization that follows wave cessation.
As exemplified by the bottom row of Figure 5-B, even a full 2
seconds after an initial wave the after-hyperpolarization is still
present enough to prevent the model from producing a second
wave in response to a second input pulse. The large-scale
model without synaptic adaptation, thus, does not respond to
repetitive stimuli at a realistic time scale.

B. Responses to Repetitive Stimuli in the Adaptive Model

By contrast, the adaptive model does respond to repetitive
stimuli. Figure 6-A shows the pyramidal cell responses to
repeated strong stimulation of the left edge of the row of genic-
ulate neurons. As is indicated by this example, in some cases
a strong stimulation causes the inhibitory response to suppress
the wave during the propagation phase. However, the adaptive
weight response to the resulting after-hyperpolarization phase
leads to rapid propagation of the second stimulus wave (2nd

row of Fig. 6-A). As the pulses continue, the model remains
responsive to the stimuli despite the after-hyperpolarization
phase after each wave. Details of the repetitive responses can
be seen by plotting the average membrane potentials of all of
the cells in the model as a function of time over 10 simulations
of 10 waves (Fig. 7-A). It can be seen by the average
membrane potentials in Figure 7-A and the darker blue colors
indicating lower pyramidal cell membrane potentials in Figure
6-A that the after-hyperpolarization phase leaves the cortex in
a lower activity state after a wave, as opposed to before a wave.
In response to this, the adaptation scheme causes the synaptic
weights of the adapting synapses to be driven past their orig-
inal values in response to the after-hyperpolarization phase.
As multiple waves propagate, the after-hyperpolarization phase
and the corresponding synaptic adaptation becomes more and
more pronounced. This progression continues until a lower
bound on the pyramidal hyperpolarization is reached. This
occurs after 5 to 6 waves in the adaptive-model. Once the
lower bound of the after-hyperpolarization phase is reached,
the activities of the pyramidal cells before and after a wave
consistently give rise to a steady state periodic response in
terms of total model pyramidal cell activity. The activity
patterns of the waves also seem to reach a steady state. The
first 4 to 5 responses can show considerable variation in wave
patterns. As exemplified by row 3 of Figure 6-A, rebound
waves similar to those observed by Wang et. al. [9] that
propagate back from the caudal pole to the rostral pole of the
cortex may be seen in the first 3 to 4 waves. However, as the
average activity patterns of 10 waves produced by a 6th input
pulse and a 10th input pulse (Fig, 6-B) and the response wave
of a 20th input pulse (Fig. 6-C), demonstrate the propagation
pattern response to identical input pulses also reaches a steady
state after 5 to 6 waves in the adaptive model. Likewise, the
synaptic weights also reach a steady state periodic response
in response to the cyclic pyramidal activity (Fig. 7-B).

Another consequence of the progression to the steady state
is a shortening of the total duration of a wave. As is illustrated
in Figure 8-A, this is due mostly to an initial shortening of
the propagation phase and a shift to a pro-activity state due to
the after-hyperpolarization phase of the previous wave. This
allows the pyramidal cell activity to grow faster. The shift back
to the anti-activity state of the model is less pronounced in
response to the shortened burst of propagation activity. Thus,
the second and third waves result in longer cessation phases
compared to the cessation phase after the first wave. The
after-hyperpolarization phases become more pronounced as the
model progresses further towards the steady state, which slows
the building of wave activity in the initiation phase slightly.
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Fig. 5. Responses of the non-adaptive model with subpial cells to right and
left stimuli. A. Eight frames at 75, 150, 225, 300, 375, 450, 525, and 600 ms
from a simulation with a strong 150 ms input pulse to the 20 rightmost LGN
cells at 0 ms. B. Forty eight frames at 75 ms intervals from a simulation with
a strong 150 ms input pulse to the 20 rightmost LGN cells at 0 and 3000 ms.

However the stronger after-hyperpolarization also leads to
even stronger pro-activity states preceding the next geniculate
stimulus and the strength of the wave activity is increased
as a result of progressively stronger pro-activity states. This
causes more pronounced wave activity bursts that last slightly
longer and the shift back to the anti-activity state following
the wave becomes more pronounced. This accounts for the
re-shortening of the cessation phase. The wave phase duration
time eventually reach a steady state when the strengthening
wave activity and increasing after-hyperpolarization reach their
bounds, and a balance with the resulting stronger pro-activity
states is achieved.

C. Habituation to Continuous Stimuli in the Adaptive Model

Similar to their response to repeated stimuli (Fig 5), the non-
adaptive models respond to continuous stimuli with one initial
wave despite the continued presence of an input stimulus.
However, flashes of pyramidal cell activity do occur in the area
covered by the geniculate axons after the cessation phase of
the initial wave. It could be expected that these flashes would
result in new waves in the adaptive model just as periodic
inputs result in multiple waves. However, the cortex responds
with a single initial wave lasting about 300 ms to a sustained
12 nA input to 20 geniculate neurons for 1,000 ms. The initial
wave is followed by sustained activity in the area directly
stimulated by the center 20 neurons, but this activity does
not lead to the development of a wave. Multiple waves do not
occur unless the stimulus is removed and then reapplied, as
it was in the periodic input simulations of section III-B. A
closer look at the weight state of the model in this sustained
localized activity state reveals the reason for this lack of wave
response. The connections to the pyramidal cells most directly
stimulated by the geniculate inputs do not returned to the

Fig. 6. Response of the adaptive model to consecutive 150 ms left pulses at
800 ms intervals. A. Example of first six activity responses. Each row shows
eight activity frames depicting the response at 10, 60, 110, 160, 210, 260, 310,
and 360 ms after a single input pulse. Thus, the top row shows responses at 10
ms to 360 ms following a pulse at 0 ms. The second row shows the response
at 820 ms to 1,160 ms following a single pulse at 800 ms, and so forth for
rows three to six. B. The average response patterns over ten simulations of
ten consecutive input pulses for the sixth (top row) and tenth (bottom row)
pulses. C. Activity response to the twentieth left input pulse.

steady state. This is due to the continued activity of these
postsynaptic pyramidal cells, which prevents synapses from
adapting back to the original values. These pyramidal cells
must first become inactive to facilitate the adaptive response.
This can be accomplished by either removing the stimulus,
as in the periodic case, or shifting the stimulus to geniculate
neurons that stimulate other areas in the model. Shifting
the input stimulation to reach pyramidal cells outside of the
unadapted area quickly leads to building activity and wave
propagation. Thus, the adaptive model remains responsive to
changing stimuli and becomes unresponsive to unchanging
stimuli.

IV. STIMULUS DISCRIMINATION IN THE
ADAPTIVE-MODEL

A key feature of the non-adaptive model is that spatially
distinct stimuli lead to statistically distinct features in activity
waves that can be used to discriminate between visual targets.
Du et al. [14], [15] carried out simulations in which spots
of light positioned at the left edge, center, and right edge of
the horizontal meridian of visual space were simulated. Left,
center and right spots of light were modeled as 150 ms square
pulse stimuli to groups of 20 geniculate neurons at the left
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edge, center, and right edge of the array of geniculate neurons.
Ten simulations of six randomly generated left, center, and
right inputs with the same parameters used by Du et al. [14]
were used to generate five model waves at 800 ms intervals to
allow the model to reach the steady state described in section
III-B. Both the cellular activity levels of all model cells and the
weight values for all model synaptic connections at the time of
completion of the simulation were recorded and averaged over
the ten simulations. These values were then taken as the values
for the steady state discussed in section III-B and used as the
initial conditions for the simulations of the left-center-right
task analysis of the adaptive model. Twenty simulations of two
consecutive waves initiated at 0 and 600 ms for each possible
pairing of first and second left, center, and right stimuli were
run. This resulted in 60 first left, 60 first center, and 60 first
right waves and 60 second left, 60 second center, and 60
second right waves for analysis.

The cortex waves for the three input locations were pro-
jected onto a three dimensional detection space using a two-
step Karhunen-Loeve decomposition (Nenadic et al. [7] and
Du et al. [14], [15]) and detection was done using the
discrimination boundaries in this space. The detection error
plots (Fig. 8-A) show that the left, center, and right waves
remain highly distinguishable up to the end of the cessation
phase. The detection plane clusters for each input type become
less dense over time as the waves propagate for both the non-
adaptive and adaptive model, and eventually begin to overlap
during the cessation phase resulting in some detection error.
Very small differences between detection plane points during
the initiation phases, due to the fact that all model waves
originate in the rostral pole, are compensated for by even
smaller differences between points of the same input location
during the initiation phase. The adaptive model compares
favorably to the non-adaptive model both in terms of input
location detection despite the shortened wave durations and
resulting propagation phase overlap between left, center, and
right waves. In fact, a case can be made that the presence
of a strong afterhyperpolarization phase once the steady state
has been reached serves to suppress the noise activity of the
model and sharpen the spatial differences between the waves,
more than adequately compensating for the decreased temporal
differences between the waves.

Nenadic et al. [7] showed that the non-adaptive model
was able to discriminate the speeds at which simulated spots
move along the array of geniculate neurons. Du et al. [15]
subsequently confirmed this result using a sliding time window
representation of the wave. The ability of the adaptive-model
to distinguish moving stimuli was evaluated using stimuli
moving in separate directions at different speeds. Since the
center of the array of geniculate neurons corresponds to the
center of the visual field, stimuli originated at the center of the
array of geniculate neurons and this task is referred to as the
center-out task. Simulations were run with the model starting
at the steady state cellular activity and synaptic weight values.
They involved two consecutive stimulus patterns resulting
in two separate waves. The first and second waves were
produced by four input types of fast and slow shifting blocks
of 20 geniculate neurons towards the caudal/left (position 1)

Fig. 7. A. Average membrane potentials for each type of cell for ten waves.
B. Average weights of all incoming synapses for each cell type over 10 waves
propagations. Weights were sampled every 100 ms. The vertical lines indicate
the start times of 150 ms left input pulses.

or rostral/right (position 201) pole of the row of geniculate
neurons. Stimulus speed depended on the rate at which the
inputs were shifted along the row of geniculate neurons. Fast
and slow rates shifted the inputs one position in the row
every 1.24 ms and 2.5 ms, respectively. For a slow shift to
the right, for example, the inputs were at positions 91 to
110 (the middle 20 positions) in the row at simulation time
0 ms and were then the shifted to positions 92 to 111 at
time 2.5 ms, and so on, until the input block was at position
201. It took 137.5 and 275 ms to move the inputs from the
center to the end of the row of geniculate neurons for the
fast and slow rates, respectively. Twenty simulations each of
the four shifting stimulus types (center-to-left, slow, center-
to-right slow, center-to-left fat, and center-to-right fast) were
run. Because there are four input stimulus types in the center-
out task, linear log-likelihood boundaries can not be drawn
in the three dimensional detection space. However, maximum
log-likelihood ratios for each position in the detection space
can be calculated and used for detection. As is indicated by
the detection error rates of the first and second waves (Figure
8-B) the overlap of the input type clusters in the detection
space remains small. In fact, the detection error rates of the
center-out task are very comparable to those of the left-center-
right task indicating the adaptive models ability to distinguish
stimulus differences in motion as well as location.
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Fig. 8. A. Error rates over time for first vs. second stationary stimuli waves.
All plots use a w of 10 and a SDW of 55 ms. Left: Detection error probability
over time for non-adaptive cortex [14]. Center: Error rate over time for the
set of first waves. Right: Error rate over time for the set of second waves.
B. Error rates over time for the center-out task. Right: detection error rates
using the all three B- dimensions for the first waves. Left: detection error
rates using all three B-dimensions for the second waves.

V. DISCUSSION

A. Synaptic Plasticity

Hebb [17] formalized a rule governing how synaptic ef-
fectiveness could change as a function of activity in the
presynaptic and postsynaptic activities elements of synapses.
He postulated that synaptic strength should increase when
activity in the presynaptic element of the synapse resulted
in activity of the postsynaptic element. An experimental test
of Hebb’s postulate came with the discovery of long term
potentiation (LTP) in rat hippocampus [18]. (See the review
by Lynch [19].) Subsequent work (see the review by Bear and
Abraham [20]) has demonstrated the existence of the opposite
effect, long term depression (LTD), in a variety of synapses.
In LTD, correlated activity in the presynaptic and postsynaptic
elements results in a weakening of the synapse. The cellular
mechanisms underlying LTP and LTD can be very complex
(see the recent review by Malenka and Bear [21]), but one
common mechanism involves the influx of calcium through
the activation of NMDA receptors on the postsynaptic cell and
the engagement of specific intracellular signaling cascades that
result in either the upregulation or downregulation of NMDA
receptors in the postsynaptic cell. A recently discovered form
of synaptic plasticity is Anti-Hebbian learning, which involves
the increased effectiveness of a synapse when firing in the
presynaptic and postsynaptic elements are not correlated. Anti-
Hebbian learning was first described in the electrosensory lobe
of electric fish [22], and has since been described in a variety
of neurons, including inhibitory interneurons in the hippocam-
pus [23]. Anti-Hebbian learning appears to involve calcium
permeable AMPA receptors, instead of NMDA receptors [23].
Both Hebbian and anti-Hebbian learning are forms of long
term synaptic plasticity. However, many forms of short term
synaptic plasticity (see Zucker and Regehr [24]) are known. It
is well established that the various forms of synaptic plasticity
are cell-specific, so that different populations of neurons in

a given structure can show different forms of plasticity (e.g.
Lu et al.,[25], Patenaude et al. [26]). Two forms of synaptic
plasticity were incorporated into our large-scale model of turtle
visual cortex in this paper.

Synaptic plasticity was incorporated in synapses between
pyramidal cells using an anti-Hebbian learning rule. The
synapses between pyramidal cells are known to be glutaminer-
gic and to access both AMPA and NMDA receptors. Kriegstein
and Connors [27] described a form of short term plasticity,
paired-pulse facilitation, in pyramidal cells in turtle visual
cortex that peaked with interpulse intervals of approximately
100 ms. LTP or LTD have so far not been described in turtle
visual cortex, but several studies indicate that both LTP and
LTD do occur in turtles and likely involve cellular mechanisms
similar to those described in other species. Muoz et al. [28]
showed that tetanic stimulation of the septum produces LTP
in the limbic cortex of turtles. The potentiation is blocked by
NMDA receptor antagonists and by nifedipine, an antagonist
of L-type calcium channels. Johnson and Mitchell [29] showed
the presence of LTD in motoneurons innervating the pectoralis
muscles of turtles. Keifer and her colleagues [30], [31], [32],
[33], [34], [35] have shown that a Hebbian-like conditioning of
the eye blink reflex exists in an in vitro brainstem preparation
of turtles. Pairing stimulation of the auditory nerve with
stimulation of the trigeminal nerve produces a conditioned
eyeblink response that is dependent upon NMDA receptors.
Conditioning reduces immunoreactivity to the calcium bind-
ing protein, calbindin-D28K, in the abducens motoneurons
responsible for the eyeblink. Anti-Hebbian learning has not
been demonstrated in turtle visual cortex.

Synaptic plasticity was incorporated in the model in the
synapses between the three types of inhibitory interneurons
and pyramidal cells using a Hebbian learning rule. Inhibitory
synapses in turtle visual cortex are known to be GABAergic
and to access both GABAA and GABAB receptors (e.g. [27]).
Synaptic plasticity has been studied principally in excitatory
glutaminergic synapses. However, recent work has demon-
strated several forms of long-term plasticity in inhibitory
synapses in several structures, including the hippocampus,
neocortex and cerebellum [36], [37], [26]. The mechanisms
underlying LTP and LTD in inhibitory synapses are not as
well characterized as are those of glutaminergic synapses, and
there have been no studies of plasticity in inhibitory synapses
in turtles. The incorporation of a Hebbian learning rule in the
model for inhibitory synapses is plausible, based on what little
is known of the plasticity of inhibitory synapses in mammals.

B. Modeling Hebbian Learning

Mathematical models of Hebbian learning can be divided
generally into biophysical models, which attempt to capture
the cellular details of synaptic plasticity, and phenomenologi-
cal models, which represent the general effects of plasticity
(e.g. [38]). Given the poor level of information about the
cellular mechanisms underlying synaptic plasticity in turtle
visual cortex, we elected to use a simple phenomenological
model of Hebbian and anti-Hebbian learning. (See Haykin [39]
and Gerstner and Kistler [40] for recent discussions of models
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of Hebbian learning.) Both learning rules used the membrane
potentials of the presynaptic and postsynaptic neurons. They
are essentially correlation models in which the rate of change
in synaptic weight depends upon the membrane potentials of
the two cells relative to a threshold window. The use of the
window, as opposed to simply using the resting membrane
potential, as a reference point allowed a noise current to be
included in the neurons. The learning rules are variants of
rate dependent rules (see Gerstner and Kistler [40]) and are
relatively crude approximations of synaptic plasticity because
it is now well-established that plasticity typically depends
upon the timing between the presynaptic and postsynaptic
spikes in the two neurons (reviews: Dan and Poo [41], [42]).
Learning windows can be measured experimentally, but these
measurements have not been done for neurons in turtle visual
cortex. Consequently, no effort was made to include timing
effects in our large-scale model at this time.

C. Functional Significance of Adaptation in Turtle Visual
Cortex

Our large-scale model of turtle visual cortex captures the
basic features of the waves generated in real turtle cortex
by single stationary or moving visual stimuli. However, the
model cortex does not respond to repeated visual stimuli
because the waves are followed by a long-lasting period of
hyperpolarization due to the activity of GABAB receptors in
neurons postsynaptic to inhibitory interneurons. The strengths
of the GABAB-receptors were chosen by trial and error to
produce a wave response. Too little GABAB inhibition results
in waves that do not subside or stay in the cessation phase
a unrealistic length of time. As indicated, stronger GABAB
inhibition leads to the long lasting after-hyperpolarization
phase following wave cessation. Because no data on miniature
GABAB-receptor mediated currents are available the conduc-
tances were constrained using the time course of slow IPSPs
[8]. Using too fast of a GABAB-receptor time course causes
the GABAB inhibition to react too soon and like the case of
too little GABAB inhibition when the wave reaches the waves
do not subside. A slower GABAB-receptor time course causes
the after-hyperpolarization to last even longer. It should be
noted that the time coarse can be shortened to the point where
a second wave is seen if the simulation is run long enough,
but no time course was found that caused the initial wave to
subside and allowed for a seconded wave within 1000 ms of
the first wave.

The adaptive model developed in this paper presents a
possible mechanism by which small inputs that occur dur-
ing the afterhyperpolarization-phase of wave propagation can
lead to the generation of new waves. It uses a balance of
Hebbian and anti-Hebbian synaptic plasticity to overcome
the afterhyperpolarization present in the non-adaptive forms
of the model. As reviewed above, the cellular mechanisms
underlying synaptic plasticity in turtle visual cortex are not
known, so the simulations described in this paper demonstrate
that incorporating some form of synaptic plasticity in the
model is sufficient to allow the model cortex to respond
to repetitive stimuli without specifying the exact forms of

plasticity that are required.
Gusel’nikov and Pivavarov [10] showed that neurons in

turtle visual cortex habituate to repeated presentations of a
stimulus at a specific point in visual space, but then respond
robustly to a different stimulus presented at the same point.
This paper demonstrates that Hebbian and anti-Hebbian forms
of plasticity are sufficient to account for this phenomenon.
The effect is due to the continued activity of the pyramidal
cells that receive inputs from the subset of geniculate afferents
that are activated by the repetitive stimulus. This activity
prevents synapses from adapting back to their original values.
The pyramidal cells must first become inactive to facilitate
the adaptive response. This can be accomplished by either
removing the stimulus, as in the periodic case, or shifting the
stimulus to geniculate neurons that stimulate other areas in the
model.

An important feature of waves in both the real and non-
adaptive model cortices is that the spatiotemporal dynamics of
the waves contain information about the positions and speeds
of visual stimuli. The information content of waves in the
adaptive model was studied using left/center/right stimuli and
a center out task using moving stimuli. Our results indicate
that waves in the adaptive model contain information about the
properties of the stimulus. A quantitative difference between
the non-adaptive and adaptive models is that the maximum
information about the stimulus occurs during the initiation
phase in the adaptive models. However, good stimulus discrim-
inability extends into the propagation phase in the adaptive
model.

VI. CONCLUSION

Our large-scale model of turtle visual cortex accurately
captures the spatiotemporal dynamics of the responses of the
real cortex to flashes of light or to moving stimuli. However,
the real turtle cortex shows responses to repeated stimuli that
are not present in the model. The principal result of this study
is that the model cortex can show responses to repeated stimuli
if a form of synaptic plasticity is incorporated into the cortex
using Hebbian and anti-Hebbian learning rules.
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