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ealization T eory for erspective Systems 
plications to Parameter Estimation 

lems in Mac 
Bijoy K. Ghosh, Senior Member, IEEE, and E. P. Loucks 

Abstract- In this paper we introduce and study a linear 
dynamical system with a perspective observation function. The 
study of these systems has been shown to be useful in motion and 
shape estimation problems in machine vision. We introduce the 
notion of perspective observability and obtain under a special 
case a necessary and sufficient condition that would guarantee 
observability of the initial condition of the linear dynamical 
system up to a one-parameter magnitude scaling. Subsequently, a 
new realization theory is introduced which is useful for studying 
linear systems with perspective observation. Our main result is to 
show that parameters can be recovered up to orbits of a suitable 
“perspective group.” A new rescaling algorithm is described to 
identify parameters up to orbits of the perspective system. The 
identification problem is further analyzed in detail for various 
problems that are of interest in machine vision. 

I. INTRODUCTION TO PERSPECTIVE SYSTEM THEORY 
HE CLASS of problems we consider in this paper is 
motivated from problems in motion and shape estimation 

well known in computer vision [ l ] ,  [2]. In recent years, a 
connection between problems in observability, identifiability, 
and realization theory, well known in systems theory, has been 
established with motion and shape estimation problems, well 
known in machine vision, and these connections have been 
sketched out in [3] and [4]. In this paper, the interconnection 
has been further established for a dynamical system that is 
evolving and is being observed in discrete time. 

To introduce a sample problem, consider a linear system 
with two state variables described as follows: 

where we assume that the parameters a l l  a2, a3, a4 are un- 
known constants. We now consider the output function 

( 2 )  Y:W2 - ((0,O)) ---i RP1 

defined as 

( Z 1 , X Z )  H [ 2 1 , 5 2 1  

where [x1,22] describes a point in RP1 in homogeneous 
coordinates, where RP1 refers to the real projective space of 

Manuscriut received January 28, 1994. Recommended by Associate Editor, 

all homogeneous lines in R2 (see [5] and [6] for details). In 
other words, we assume that the nonzero state (51, Q) of the 
dynamical system (1) is observed up to a homogeneous line, 
i.e., a line through (z1,zz) passing through the origin. If we 
now consider the coordinate chart 

{[a, x21: 22 # 01 

of [wP1 defined by the coordinate 

we obtain the following recursion on yk given by: 

U l Y k  + a2 

a 3 V k  + a4 
Y k f l  (3)  

Note in particular that the right-hand side of (3) is a rational 
function in yk. Thus (1) induces a rational recursion in the 
coordinates yk of the observed homogeneous lines. We now 
introduce the following problem. 

Problem 1.1 (Sample IdentlJication Problem): Consider the 
rational dynamical system (3 ) ,  where we assume that we 
observe y k ,  k 2 0. The problem is to identify parameters 
a1 , a2, u3, a4 to the extent possible from this data. 

It is clear that at best one can hope to identify al, a2, ~3~ a4 

up to a one-parameter magnitude scale factor. It would be 
important to understand, however, under what condition on 
the parameters al, a2, a3, a4 and initial condition zl(O),z2(0) 
would the identification indeed be possible. It may be remarked 
that Problem 1.1 is motivated classically from the following 
Riccati question. 

Question 1.2 (Riccati’s Question}: If points on a plane sat- 
isfying a linear dynamical system in continuous time are 
observed up to the slope of the line which the point makes with 
respect to the origin, what can be said about the dynamics of 
the slope? 

It is well known that in continuous time, the slope dynamics 
is described by a one-dimensional Riccati equation of the form 
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DE-FG02-90ER 14 140. where E denotes the slope. Moreover, in discrete time the 
slope dynamics is given exactly by (3). The rational dynamics 
( 3 )  can therefore be viewed as a discretization of the Riccati 
dynamics (4) where the coefficients a1 , a ~ ,  a3 a4 have to be 
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To motivate similar problems from machine vision, we 
consider a rigid body which is undergoing both rotation and 
translation. We assume that the body is being observed by a 
CCD camera which observes points on a surface of the body 
up to homogeneous lines which the point makes. We consider 
two coordinate frames, one attached to the camera [let us call 
it (xe, yc, zc) ]  and the other to the coordinate frame [let US call 
it the body coordinate frame ( 2 6 ,  yb, zb)] with respect to which 
the body is translating at a constant velocity. Thus we have 

Furthermore, let us assume that the camera coordinate frame is 
rotating with respect to the body frame at a constant angular 
velocity. Thus we have 

where R is a skew symmetric matrix given by 

Combining (5) and (6) we obtain 

where X ,  = (xe ye zC)* and where 2 4 0 )  = 
(Cz Cy 5z)T.  Equation (8) describes the combined effect 
of rotation and translation of the rigid body. This example 
has already been considered in 131 for systems described 
in continuous time. 

Since the CCD camera observes the point (xc yc 2.) up 
to a homogeneous line, we have the following observation 
function: 

Y:R6 - H + RIP2 

( X C  Zc) ++ [xc yc 2.1 (9) 

H = {(Xc Z, ) :Xc  = O}. 

where 
A 

The pairs (l), (2) and (€3, (9) describe a linear system with 
perspective observation and can be considered as examples 
of perspective dynamical systems studied in this paper. In 
general, let us consider a linear system 

Xk+l = A X k ,  zk = C X k  (10) 

where xk E R", z k  E RP for IC = 0,1, . . . . Let us assume that 
p > 1 and that z k  is observed only up to a homogeneous line, 
i.e., we have the observation function 

Y :  IWP - (0) + R P - l  

x k  I---f [ zk ]  = [ c x k ]  (1 1) 

where [ z k ]  is a point in the projective space R P - '  of all 
homogeneous lines in RP. The observation function Y is 

not defined for zk = 0. In this paper we shall allow zk to 
be the zero vector at certain time instants k = k l ,  k2, . . . 
Furthermore, we shall not distinguish between two dynamical 
systems that have the same value of the observation function 
Y except perhaps the observation function is not defined at 
k = k ~ , k z , . . . .  Thepair(10),(11) wouldbereferredtoasa 
"perspective dynamical system." We now propose to introduce 
problems 1.3 and 1.6 as follows. 

Problem 1.3 (Perspective Observability Problem): The dy- 
namical system (lo), (1 1) is said to be perspectively observable 
if for every pair of initial conditions 50, xb where [xo] # [xb], 
there exists some k such that [CA'xO] and [CAkxh] are 
defined and [GA'xo] # [CAkxb]. We seek condition on A,  C 
such that the dynamical system (lo), (11) is perspectively 
observable. 

In Section I1 we show the following result. 
Theorem 1.4: The perspective system (lo), (1 1) is perspec- 

tively observable if for any set of eigenvalues XO, X1 of A 
(possibly repeated) one has 

Moreover, if the eigenvalues of A are in R, (12) is also 
necessary. 

Remark 1.5: Theorem 1.4 is true even over the base field 
C of complex numbers. In fact, since every eigenvalue of A 
is in 6, (12) would always be necessary and sufficient for 
perspective observability over 6. 

It may be noted that a result similar to Theorem 1.4 has 
already been introduced for perspective systems described in 
continuous time [7], [8]. As a corollary of Theorem 1.4 we 
infer that if the perspective system (8), (9) is perspectively 
observable, then provided that the rotation matrix Cl is known, 
one can recover the vector 

up to a one-parameter magnitude scaling. Of course if R is 
unknown, one introduces the following identification problem. 

Problem 1.6 (Perspective Identijication Problem): Consider 
the dynamical system (lo), (11). Assume that $0 # 0 and 
the parameters A, C are unknown. For some kl ,  k2, where 
0 5 kl  < k 2 ,  assume that [CAkxo],k  = k l , k l  + 1, 
has been observed. The problem is to compute A, C, and [20] 
from this data to the extent possible. 

It may be noted that the parameters A, C, [ZO] cannot be 
completely recovered from [ zk ]  = [CAkx0].  The main result 
of this paper is to show that the nonuniqueness in C, A, [XO] 
which produces the same [ z k ]  can be described as an orbit of 
a perspective group 8. The exact description of 8 not only 
depends on the McMillan degree n of system (lo), (11) but 
additionally on two other invariants g and 91. Definitions of 
these invariants are relegated to Section I11 of this paper. 

For the purpose of this section, we state that for a generic 
choice of the matrix A, specifically when the characteristic 
polynomial of A have all nonzero coefficients, the invariants 
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g and g1 take the value 1 and 0. In this case, the orbit of the 
perspective group G is described as follows. 

1) P E GL(n)  acting on (C,A,zo)  as follows: 

(C,  A ,  20) H (CP,  P-lAP, P - ~ z o ) .  

(C,A,zo)  H (XIC XZA X 3 X O ) .  (14) 

(13) 

2)  X1, Xz, E R - {O} acting on (C,  A ,  ” 0 )  as follows: 

Action (1 3) is already well known in linear system theory and 
is obtained as a result of change of basis in the state space. 
Scaling action (14) is new and is a result of the perspective 
observation function (1 1). 

The collective actions (13), (14) will be referred to as the 
action due to a perspective group G. In Section I11 we show 
the following important result for the case when the number 
of outputs p is greater than or equal to the number of state 
variables n. 

Theorem 1.7: Let us consider triplets (C, A, 20)  such that 
the vectors Czo, CAzo, . . . , CAn-lzo are linearly indepen- 
dent and such that the pair of integers g,g1 as defined in 
Section I11 are, respectively, 1 ,  0. Under this generic condi- 
tion on the triplet (C,A,xo) ,  it is possible to identify the 
parameters of system (lo), (1 1) up to orbits of the perspective 
group 4.  

In fact, for a continuous time system, a result similar to 
Theorem 1.7 has already been introduced and proven in [3]; 
see also [9]. 

Remark 1.8: Let us define two dynamical systems of the 
form (10) to be perspectively equivalent if their outputs zk 
differ by a nonzero multiplicative factor for each k = 0,1,  . e . 
Theorem 1.7 characterizes all dynamical systems of minimal 
state dimension n that are perspectively equivalent to a given 
one under the condition that (3x0, CAxo, 
linearly independent vectors, and where the integers g = 1 
and g1 = 0. In this paper, we shall also extend the result 
stated in Theorem 1.7 to the general case when g 2 1 and 
g1 2 0. This has been described in Theorem 3.3. 

It has been observed in Section 111 that the description of 
the group G and its action on the perspective system (lo), (1 1) 
is somewhat straightforward if one were to describe the group 
action on the sequence (7x0, CAxo, CA’xo, . . . as opposed 
to the triplet (C, A,  20) .  This leads to an important question 
as to how one would realize .in state space a sequence of 
nonzero vectors as homogeneous coordinates of the output 
of a perspective system. In particular, given a realization 
of a perspective system, is it possible to parameterize the 
realization of the orbit of the perspective group acting on 
the system. This way one would parameterize all systems 
preserving a certain triplet of integer invariants n, g, g1 in state 
space that are perspectively equivalent to a given one. This 
problem has been discussed in Section IV. 

In Section V we introduce an algorithm to identify param- 
eters of a perspective system up to orbits of the perspective 
group. This newly introduced algorithm is called “the rescaling 
algorithm” and signifies the fact that an observed sequence of 
nonzero vectors have to be rescaled by an unknown sequence 
of nonzero scalars before it can be realized as an output of 

a dynamical system of degree n. The rescaling algorithm 
computes the unknown scalar sequence. 

In Sections VI-VIII, as an application of the proposed 
realization theory described in Sections 11-V to problems in 
machine vision, we consider a planar surface undergoing an 
affine motion and assume that the surface is observed by a 
CCD camera. The problem of motion and shape identification 
in this context is shown equivalent to parameter identification 
of a perspective system. A complete set of identifiable mo- 
tion and shape parameters has been characterized when the 
camera-observation function is assumed to be “perspective” 
and “orthographic” projections. We also analyze the special 
case when the planar surface undergoes a rigid motion and 
recovers many known results in the literature [l], [2]. 

In summary, we introduce a new theory of perspective 
dynamical system and apply the theory to motion and shape 
estimation problems in machine visi’on. 

11. THE PERSPECTIVE OBSERVABILITY PROBLEM 

In this section we propose to consider Problem 1.3 but 
introduce and analyze the problem in slightly more generality. 
We shall let K denote either the field of real (K = R) or the 
field of complex (K = C) numbers. Let A be an n x 71 matrix 
and C be a p x n matrix defined over K. We consider the linear 
time invariant system (lo), where z k  E K n , z k  E 86”. Recall 
that the well-known Hautus’s test [ lo] gives a necessary and 
sufficient condition when the state vector Xk can be observed 
from the output measurement z k .  To be precise, one has the 
following. 

Theorem 2.1 (Huutus [lo]): System (10) is observable over 
either R or C if and only if 

To introduce the main result considered in this section, let 
PO c Kn be a d-dimensional plane not necessarily passing 
through the origin. We say that dynamical system (10) is 
perspectively observable with respect to d-dimensional planes 
if for every pair of d-planes PO, QO such that PO # QO there 
exist a k 2 0 such that CA‘Po and CA‘Qo are both d -  
planes and CA‘Po # CA’Qo. Our main result is described 
as follows. 

Theorem 2.2: System (10) is observable with respect to 
d-dimensional planes in K” if for any set of eigenvalues 
XO,. . .  , Ad of A one has 

Moreover, this condition is also necessary if d = 0 or if the 
eigenvalues of the matrix A are in 06. 

Note in particular that Theorem 1.4 is a special case of 
Theorem 2.2 when d = 1. In fact, Theorem 2.2 follows from 
an immediate adaptation of a similar result reported in [8] 
for a continuous-time system. Only an essence of the proof is 
therefore sketched below. The proof of Theorem 2.2 is based 
on a careful study of a dynamical system defined on the vector 
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space Ad+'Kn, the (d + 1)-fold wedge product of 06" [ 111. 
Define linear maps as follows: 

A : A d f l K n  AdS1Kn 

XoA..  . A Z d  ++ AZO A . . . A AZd (17) 

and 

Using the above two maps, we consider the dynamical system 

It can be shown that provided the eigenvalues of A are in 
K. (16) is equivalent to a particular notion of observability 
of system (19), and this condition is also necessary and 
sufficient for the observability of PO under the output function 
GA'F'o, i.e., perspective observability of (10) with respect to 
d-dimensional planes. 

The statement of the main result which is an easy adaptation 
of the result described in [7] and [8] is now stated. 

Lemma 2.3 (Main Lemma): Assume that the eigenvalues of 
the matrix A are in 06. Then the following conditions are 
equivalent. 

I )  There are eigenvalues A,, , . . . , A,, of A and a nonzero 
vector 'U E 06" 

L .I 

2) There is a X E K and a decomposable vector PO A . . . A 
ijjd E Ad+lKn 

(A ,,I) po A . . . A p d  = 0. 

3) Dynamical system (19) has a decomposable vector a0 A 

Proof 1) H 2): Let 'U be a vector in the kernel of the 
. . . A all E Ad+lKn in its unobservable subspace. 

matrix 

It follows that 'U can be decomposed as 

where 71, is in the eigenspace of Xis .  Furthermore, it can be 
deduced from [8] that 

U0 A . * .  A'Ud 

is an eigenvector of A corresponding to the eigenvalue X = 
X,,X,, . . .  Furthermore, since Cw = 0 it follows that 

2) H 3 ) :  The vector Po A . . . A.& is necessarily an eigen- 
vector of A and is therefore in the unobservable subspace U 
of (19). 

C(.CIO A .. . A ' U ~ I )  = 0. 

3) H 1): This case is nontrivial but follows from an appli- 
cation of [7] or [8]. The details are omitted. 

Lemma 2.3 is similar but not exactly what has been proved 
in [7] and [8]. The difference lies in the fact that the linear 
map A in (17), is different from that defined in [7] and [8]. 

We now proceed to prove Theorem 2.2 as follows. 
Proof of Theorem 2.2 (SufJiciency): Let PO, QO c K" be 

two d-dimensional planes with PO # Qo. Let 40 E QO be 
a point such that 40 PO. Let {ZO, 

set of points in general position, and 
decomposable vector 

A 
w = (40 - 50) A ( 2 1  - 50) A . . . A (xd - 2 0 ) .  

If (16) holds, it follows from Lemma 2.3 that there is no 
decomposable vector in the unobservable subspace U of (19). 
Thus w U. Hence CA'w # 0 for some k 2 0. It follows that 

(CA'qo - CA'zo)A (CA'z1 - CA'"z0) A 

A (CA'zd - CA'XO) 

is nonzero for some IC 2 0. But then we have that CAkqO # 
CA'Pp, for some IC 2 0, i.e., CA'"Q0 # CA'Po for some 
IC 2 0. 

(Necessily): Assume that there is a set of eigenvalues 
X o , . . . , X d  of A such that the rank condition (16) is not 
satisfied. By Lemma 2.3 it follows that there exists a nonzero 
decomposable vector zo A A x d  in the unobservable subspace 
U of (19). 

Define V = span {xo, + . , zd}.  Clearly V is a d + 1 
dimensional subspace. We now define a sequence of subspaces 

ur, fi span { c A ~ ~ ~ ,  . . . , CA"~J 

k = 0 , 1 , 2 , .  e . Since CAkxo A e + A CA'"xd is a zero vector 
for all k 2 0, it follows that dim U, 5 d for all IC 2 0. We 
now define a map 

q k :  v 4 u k  

x H CA". 

Let us now consider the set of all d-dimensional subspaces of 
V (call it V d )  such that Q' restricted to v d  is surjective. It 
follows that in Grass (d, d + 1) the set of all such subspaces 
form an open and dense set KI, for each k .  Define IC = n k  x k ,  

where K is clearly dense in Grass (d ,  d + 1). Let PO and QO 
be two distinct points in IC. It follows that 

CA'Po CA'"& = uk 

for IC 2 0. Thus PO and Qo cannot be observed. I 
To summarize, in this section we have considered the 

discrete-time system (10) under the hypothesis that z k  is 
observed up to a d-dimensional plane. The problem that we 
have considered is to observe the initial condition xo up to a 
d dimensional plane. We have obtained a generalization (16) 
of the Hautus's observability criterion (15). Of course the 
observability problem presupposes that the parameters A and 
C are known. If this is not the case (as would typically be 
in various problems of machine vision), then one needs to 
consider the perspective identification Problem 1.6, described 
in Sections 111-V. 
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111. THE PERSPECTIVE IDENTIFIABILITY PROBLEM 

The purpose of this section is to analyze Problem 1.6, 
the perspective identifiability problem, and in so doing prove 
Theorem 1.7. We start off by considering the linear dynamical 
system (10) together with the observation function (1 1) and 
show that if the parameters A, G, [Q] are unknown, it is pos- 
sible to recover the parameters up to an orbit of a perspective 
group. 

Assume that (10) is minimal as a linear dynamical system 
with state dimension n. Let us consider the output sequence 

{ X O , X l , X 2 , . . . }  (20) 

of p-vectors and define 

20 21 22 ' ' . 
z 3  . 

IT(%)= [:: :: Z; : m )  (21) 

to be the Hankel matrix corresponding to (20). Clearly rank 
H ( z 3 )  = n. Thus there exists ao, a l l . .  . , a,-l such that 

ZJ+n. = Q023 + Q l Z , + l  + * ' * + Qn-lz3+n-1 (22) 

for j = O , l , .  . . . We now assume that (20) is such that at 
least one of the real numbers a0, al,  . . . , an-l i s  nonzero. 
The alternative case is trivial and will be dealt with later on. 

We now define two additional integer invariants g ,  gl that 
correspond to (20). Let g1 be the smallest integer such that 
agl # 0. We now define a set S of integers as follows: 

(23) 

The integer g is defined to be the greatest common factor 
(g.c.f.) of all elements in S. We have thus associated three 
unique integers n, g1 , g to (20). Let us now make the following 
important assumption about sequence (20). 

s = { k  -91: Q k  # 0,gl  < k 5 n - 1) U {n  -g1}. 

Assumption 3. I :  The vectors 

{%1+3,37I+S+3, . . .  Jgl+(o-l)g+J) (24) 

are linearly independent for all 1 = O , l , . . . , g  - 1, where 
= (n  - g1)/g. 
Note that (22) can be written equivalently as 

?7+n = Q9lZJ+91 + "sl+sz3+sl+9 + 
+ (Q - 1)g ~3+s1+(8-1)g. (25) 

An important consequence of Assumption 3.1 is described as 
follows. Let us consider a sequence 

{Yo, Y l ,  Yz, . . .t (26) 

of p-dimensional vectors and assume that for some nonzero 
sequence 

{60,61, 6 2 ,  * .  9 )  (27) 

y J = 6 3 z 3 ,  j = o , 1 , 2 , . . .  (28) 

of scalars, we have 

where z3 is the sequence (20) that satisfies Assumption 3.1 

Definition 3.2: We shall say that sequence (26) preserves 
the integers n, g, g1 (where g1 < n and g divides n - 91) if 
there exists Pgl , Pgl+g, Pg1+2g, .  . . , Pgl+(o-l)g such that for 
j = 0 , 1 , . . .  we have 

Y3+n P m ~ j + g l  + Pgl+gYj+sl+g 

+. . .  + Pgl+(e-l)gYJ+g,+(o-l)g (29) 

where B = (n  - gl)/g.  
We now state the main result of this paper. 
Theorem 3.3 (Main Theorem): Let us assume that we are 

given sequence (20) of p-dimensional vectors satisfying As- 
sumption 3.1. Additionally we assume that (20) is such that 
at least one of the real numbers ao, ".,a,-1 is nonzero so 
that one can uniquely define integers n, g,  and 91. Let (26) be 
any other sequence satisfying (28) for some nonzero sequence 
(27), then the following two conditions are equivalent. 

1) Sequence (26) preserves the integers n, g, g1 correspond- 

2) Sequence (27) satisfies the condition 
ing to sequence (20). 

for all j = g1 + 1 ,g l  + 2 , . . .  . 
Furthermore, if (29) is satisfied, then 

n 2 rankH(y,) 2 =. 
9 

We now make the following two remarks. 
Remark3.4: Note that the sequence (20) is of Hankel 

rank n, and in fact the integers n, g, g1 are uniquely defined 
for sequence (20). Sequence (26) derived from (20) is not 
necessarily of Hankel rank n. Thus to say that (26) preserves 
the integers n , g ,  and g1 does not mean that the choice of 
these integers is unique. 

Remark 3.5: In general, for an arbitrary scale factor se- 
quence (27), the Hankel rank of (26) could be arbitrary large. 
The point of the Main Theorem 3.3 is that under a suitable 
recursion (20), sequence (26) preserves the integers n, g, gl, 
i.e., it satisfies recursion (29). More importantly, the Hankel 
rank of (26) is upper bounded by n and lower bounded by 

In view of (29), note that there are exactly g+g l+ l  arbitrary 
elements in the scale factor sequence (27). Thus we have a 
group Gp defined as follows: 

(n - 91)/9. 

(32) 
a G, 7 R* x R* x * a *  x R* 
P 

+g+g1+1 fold c 

where R* = R - (0). Note that R* is a group under 
multiplication and G, is a group under component wise 
multiplication. Let S be the space of sequence of p-vectors. 
We now define the action of G, on S as follows: 

T :  G , x S + S  

( ( 6 0 , .  ' .  ,6g+g1), (zo, 21,. ' .  1 zg+g,, . .,I) 
H ( 6 0 2 0 ,  6121, . . , 6g+g1 Zg+g1, . . .) (33)  

where 6,'s satisfy recursion (30). The following theorem 
describes the main identifiability result. 
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Theorem 3.6: Let {&} and {p , }  be two sequences of p-  
dimensional vectors that preserve integers n, g,  g1 and satisfy 
Assumption 3.1. The following two conditions are equivalent. 

1) {&} and { p , }  are in the same orbit of the G, action 

2) There exists a sequence {SO,  61, . . .} of nonzero scalars 

Remark 3.7: It may be remarked that the sequences { E , }  
and { p ,  } are perspectively indistinguishable whenever G, = 
6, p ,  , j = 0, 1, . . . . This is because, up to a scale factor, I, 
and p3 are the same vectors for every j 2 0. Theorem 3.6 
provides a characterization of perspectively indistinguishable 
sequences as an orbit of a group Gp action. 

We shall now present a proof of the Main Theorem 3.3, first 
of all by considering the special case when g1 = 0. We also 
assume So = 1 without any loss of generality. We have the 
following lemma. 

Lemma 3.8: Let us consider a sequence (30) of Hankel 
rank “n” with associated integers n,g I ,g .  Assume g1 = 0 
and let (30) satisfy Assumption 3.1. Let (26) be any other 
sequence which satisfies (28) for some nonzero sequence (27), 
where we assume So = 1. It follows that (26) preserves the 
integers n , g , g 1  corresponding to (30) if and only if for all 

described in (33). 

such that [, = S,p, , j  = 0 , 1 , . . .  . 

j = 0 , 1 , 2 , . . .  

S,+S = S 3 S g .  (34) 

To prove Lemma 3.8, we begin with a definition and some 
simple propositions. 

where s < kp (note that if kl = k p ,  the proof is trivial). We 
claim that s is also a generator for A. Now since k-2 is a 
generator for A, by Proposition 3.11 and from (39) we may 
write 

Skl = S;J,. (40) 
Since k l  is a generator for A, from (40) we have for all 

(41) 

On the other hand, since kp is a generator for A, from (39) 
we have 

(42) 

j = 0 , 1 , 2 , . * *  

&+kl = S,Sk, = s ,s2zss .  

6,+kl = S,+nkz+s = 6 , + S C 2 .  

Comparing (41) and (42) we have 

&+s = S j S S  (43) 

and thus s is a generator for A. If s = 0, then kz is the g.c.f. 
If s # 0, we may repeat the above argument replacing kl and 
k2 with k2 and s, respectively. Such recursion will conclude 

Proof (SufJiciency): To show that (26) preserves the in- 
tegers n, g, and gl, we must find bo, Pg, p Z g , .  . . , & such 
that for all j = 0, 1 , 2 , .  . . 

with s = 0, in which case kp is the desired g.c.f. 
We now prove Lemma 3.8. 

s j + n z j + n  =posjzj  + Pg63+gz j+g  

+ ’ .  . + P n - g S j + n - g z j + n - g .  (44) 

Definition 3.9: Let A = {6,},”=, be a sequence of nonzero 
real numbers with 60 = 1. We say that the integer k > 0 is a 

We claim that such a choice of Pk is given by 

(45) 63+n 
P k  = Qk- 

4 + k  
generator for A if for all j = 0 , 1 , 2 ,  . . . we have 

(35) 

Proposition 3.10: If k is a generator for A, then for all 
for k = 0, g,  e .  e , n - g. Notice first of all that from (25) and 
(4% (44) follows. What remains to be shown is that P h  as 

Note that every k in the set ( 9 , .  . . , n-g ,  n }  is a multiple of 
g. Hence they are all generators of A. Thus we conclude that 

6 j + k  S j S k .  

defined via (45) is independent of 3 .  j = 0 , 1 , 2 , * * *  

S,, = (7;. (36) 

The proof is clear. S3+% = S,S, and S,+k = 6,Sk. 

m > 0, 6, may be written as a product of 61 , 62 , . . . , Sk . 
Proposition 3.1 I: If k is a generator for A, then for any 

It follows that (45) can actually be written as 

(46) 
Proof Using (35) and (36), we may write 6, 

p k  = Q k T  

6, = s$ss d k  

which is clearly independent of j .  
(37) 

where m = j k  + s , j  2 0, and s < k .  
Proposition 3.12: The integers kl and kz are both gen- 

erators for A if and only if their g.c.f is a generator for 
A. 

Proof Sufficiency is clear since kl  and kp are both 
multiples of their g.c.f. g, and thus for all j = 0 , 1 , 2 , .  .. 
we have 

= 63+ng = 6~6,” = S j S n g  = 6 j s k , .  (38) 

Likewise one can write a similar statement for k2. To show 
necessity, we suppose without any loss of generality that 
k1 > k2 and write 

k1 = nk2 + s (39) 

(Necessity): We assume that (26) preserves the integers 
n ,g ,  and 91 associated with the sequence {z3}go, i.e., that 
there exist PO, Ps1 Pzg, e - . , satisfying (44). Let us rewrite 
(44) as 

. Z,+n-g. (47) 

Since (30) satisfies Assumption 3.1, it also follows that the co- 
efficients QO, ag, apg , . . . , in (25) are unique. Comparing 
(47) and (25), it follows that 
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are all independent of j .  Note that by the definition of 91, PO 
is nonzero since g1 = 0. However, in general p k ,  for certain 
k = 1 , 2 ,  . . . , 0  - 1 can be 0. If we assume p, is nonzero, we 
may proceed as follows. Since S,/S,+, is independent of j ,  
it follows that 

assuming SO = 1. On the other hand, since S3+,/S3+, is 
independent of j ,  it follows that 

Combining (49) and (50) we have 

&+3 = 44  

for j = 0 , 1 , 2 ,  . . . . Hence g is a generator of A. (Q.E.D.) 
Analogously one can show that for all k such that p k ,  # 

0, kg is a generator of A. Since by definition g is the g.c.f. of 
all kg such that p k ,  # 0, k = 1 , 2 , 3 ,  . . . , it would follow that 
in general g is a generator of A. 

Remark 3.13: If in fact we assume that 60 # 1, then 
Lemma 3.8 can be restated with (34) replaced by 

Proof of Theorem 3.6: Let {&} and { p j }  be two se- 
quences of p-dimensional vectors that preserve n, g, g1 and 
satisfy Assumption 3.1. If 1)  is satisfied, clearly 

P I  = b j t j  

for some nonzero sequence {SO, &, . . .}. Hence 2) is satisfied. 
Conversely if 2) is satisfied, we have two sequences {&} and 
{ p j }  that preserve integers n, g,  g1 and satisfy the assumptions 
of the Main Theorem 3.3. Hence it follows that the sequence 
{SO, 61,. . .} satisfies (30), i.e., {&} and { p , }  are in the same 
G, orbit. (Q.E.D.) 

As a final result of this section, we prove Theorem 1.7 
stated in the introduction. 

Proof of Theorem 1.7: This theorem is a special case of 
the Main Theorem 3.3 when g1 = 0 ,g  = 1. In this case (30) 
reduces to 

SOS,+l = SjSl (52) 

for j = 1, 2 , .  . . . Sequence (27) reduces to 

{So,Sl,Sl/So,s:/S;, . . .  .>. 

Thus every sequence which preserves n:g = 1 ,g l  = 0 and is 
perspectively indistinguishable from the sequence 

{ CZO, C A Z ~ ,  . . .} (53) 

must be of the form 

for j = 0 , 1 , 2 , * . * .  
Proof of the Main Theorem 3.3: Let us first assume that 

g1 = 0. In this case, (30) reduces to (51) which is equivalent to 
(34) whenever 60 = 1. Thus from Lemma 3.8, the equivalence 
of Conditions 1) and 2) of Theorem 3.3 is verified. 

Note that the upper bound on the rank of X(y,) is satisfied 
because the integer n is preserved. On the other hand by 
Assumption 3.1, ;Ft(z,) has at least n/g linearly independent 
columns. This is because Z O ,  zg,  . . . , z7L-y are linearly inde- 
pendent vectors. It follows that yo, y,, . . . , yn-g also remain 
linearly independent and hence IFl(y,) has at least n/g linearly 
independent columns. 

When g1 f 0, one can reparameterize all sequences to start 
from j = g1 instead of j = 0. Thus we consider a new 
sequence{xj},j = g l , g 1 + 1 , . . .  and{yj},j = g I , g 1 + 1 , . . .  
and prove a lemma analogous to Lemma 3.8. Condition (51) 
would be modified as (30) verifying the equivalence of 1) and 
2). 

Once again, the upper bound on the rank of H(y,) 
is satisfied because the integer n is preserved. On the 
other hand, by Assumption 3.1, H(y3)  has at least 0 
independent columns. This is because the vectors zgl , 
z ~ , + ~ ,  . . . , zgl+(o-l)g are linearly independent. Hence the vec- 
tors ysl , ygl+,, . . . , gsl+(o-l)g are also linearly independent. 
Hence 

(Q.E.D.) 
We now proceed to prove Theorem 3.6. 

Thus if the triplet (C, A,  20) generates the sequence (53) ,  
one obtains that the triplet (XlC, X2A, X ~ Q )  would generate 
(54) provided X1 A3 = SO , A 2  = S1 /SO. Thus we have the group 
action described by (14). Finally, since the triplet (C, A,  20)  

is minimal as a linear dynamical system, we have the action 
described by (13). (Q.E.D.) 

Remark 3.14: As a final remark of this section, we com- 
ment on the case when 010, . . . , a,-~ are all 0 in (22). In this 
case, (20) reduces to 

{ z o , z l , " ~ , z T L - l , O , ~  ..,0}. (55) 

It is trivial to verify that every other sequence which is 
perspectively indistinguishable from (20) ,must be of the form 

{ S ~ z ~ , S ~ Z ~ , . . . , S n ~ ~ z n - l , O 1 . . . , O }  (56 )  

for arbitrary nonzero scalars 60, . . . , &-I .  

I v .  STATE-SPACE REALIZATION OF PERSPECTIVE SYSTEMS 

In this section, we shall study the following problem. 
Problem 4.1 (Perspective Realization Problem}: Consider 

the perspective dynamical system (lo), (1 1) and assume that 
we observe [zk], for k = 0 , 1 , 2 , .  . ., except perhaps when 
xk = 0. Assume furthermore that (10) is of minimal state di- 
mension n as a linear dynamical system and that the sequence 
z, , J = 0,1,2, . . . satisfies Assumption 3.1. The problem is to 
characterize the set of all realizations (A, C,  20)  that produce 
the same perspective output [ z k ]  with the state dimension 
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upper bounded by n. Furthermore, we require that if the 
sequence { zk}pz0 corresponds with the integer g,  91, then for 
every realization (A ,  C,  zo) the sequence Czo, CAxo, . . . also 
preserves the integers g. 91. 

Remark 4.2: Recall that if instead of [xk] one observes xk 
for k = 0 ,1 ,2 , .  . ., then the set of realizations ( A ,  C,  s o )  
of minimal state dimension n that would produce the out- 
put zk can be characterized as follows. If ( A ,  C,zo) is 
one realization of minimal state dimension n, then the set 
of all other realizations of state dimension rL is given by 
(P-lAP,CP,P-lzo) ,  where P is any n x n nonsingular 
matrix. A similar characterization for perspective systems is 
detailed in this paper. 

Recall that if (20) is a sequence of rank 71 satisfying the 
recursive relation (22) ,  one can construct a state-space system 
of the form (10) with impulse response given exactly as (20). 
In particular, one can obtain 

2 0  = ( O , O ,  ' ' , O .  1)T (57) 
C = ( ~ 1 ,  ~ 2 ,  ' ' 1 CrL) (58) 

In particular if 91 = 0 and g = 1, the matrix A' is as 
described in (63) with the last row given by 

Matrix C in (62) is given by 

9 (xb.A'zb,...,A'"-'zb)- '. (66) 

The triplet (61), (63), (66), with the last row of "A'" 
replaced by (65) ,  is the set of all controllable realizations 
(of state dimension n) of sequences that are perspectively 
indistinguishable from (20) while preserving parameters g = 
1 and g1 = 0. Note that the controllable realizations are 
parameterized by exactly two parameters So and 61. 

In general, for arbitrary g1 and 9, the last row of the matrix 
"A'" can be written as follows. Assume that n = g1 + 89, 
then the last row is given by 

and 

Moreover, every other realization which realizes (20) is given 
by (P-lAP, CP, P-lxo), where P is any n x n nonsingular 
matrix. The matrix C in (58) is computed as 

C = (zo,  z l , .  . . . zn-l)(xo.  Azo, . . . , ArL-'.t.")-'. (60) 

. . . . . . . . . 

. . . . . . . . . 

(e) %+(O-l)g,  0 , .  . . , o  

If (20) is scaled by the nonzero sequence (27), provided that 

(61) 
(62) 

1 
(30) is satisfied, the new sequence (26) can be realized as The matrices xb and C' are given, respectively, by (61) and 

(64), where the vector (SO,. . . , &-I) depends on g + g1 + 1 
free parameters (60, . . . , 6s+sl), as i s  clear from (30). 

Thus to sum up, if a sequence (20)'is of Hankel rank n and 
corresponds to integers g and 91, and if the sequence satisfies 
Assumption 3.1, then the set of all controllable realizations of 

0 1 0 sequences that are perspectively indistinguishable from (20) is 
characterized by g + ,ql + 1 free parameters. 0 0 

zb = (o ,o , .  . ' ,0 ,  l)T 

C' = (c;; c;, . . . , c;, 

and 
0 . . .  
1 . . .  

A'= [ i i 1 : ;  1 1. (63) V. A RESCALING ALGORITHM 

6" 6, 611 6 7 1  In this section, we consider a sequence of p-dimensional 
60 61 62 vectors z3 ,  j = 0, 1, . . . . We assume furthermore that there ao- a1- a2- . . '  Q,I1-1 ~ 

S n  - I 

The matrix C' in (62) can be computed as 

C' =(Soxo,S1z1,~~~.G,_lzr,-1) 
. (.;.A'.;,. . . , A ' r i - l ~ b ) - l .  (64) 

The triplet (6 1)-(63) characterizes the set of all controllable 
realizations (of state dimension n)  of sequences that are 
perspectively indistinguishable from (20) and preserves the 
integers 9, gl .  As has been remarked before, the triplet is not 
necessarily minimal. 

exist three integers n, g, g1 where g1 < n, and g divides n - gl 
with respect to which the sequence {x3} satisfies Assumptioii 
3.1. We assume furthermore that the sequence {xJ} is not 
observed. Rather, the observed sequence of vectors is given 
by {e> where 

43 = 63% (68) 

where the 63's are a sequence of arbitrary nonzero scalars. We 
once again assume that (C,A,zo)  is a minimal triplet which 
generates the sequence ( z j }  and thus rank[E(zj)] = n. To 
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rescale the observed output sequence {qg},"=o, we wish to find 
a sequence of nonzero scalars XO, XI, X2, . . . such that for the 
sequence {A, q, }Fo, the integers n, gl, and g are preserved. 
It follows that there exist scalars PSI, Pgl+g,. . . , P91+(0-l)g 

such that 

X,+nq,+n = P g i q s i + d g i + 3  f Ps1+9qa+g+3Xgi+g+3 

+ P91+2gqg1+29+3X91+29+3 . . . 
+ P n - g q n - g + g X n - g + 3  (69) 

for j = 0 , 1 , 2 , .  . . and where g1 + 6'9 = n. By Assumption 
3.1, we have that 

qgi+g,qg1+3+$"" ' ,qy i+g+(8- l )g  = qn+J--S 

are independent vectors. Therefore, one can compute the 
coefficients 

uniquely from (69). Let us denote the vector in (70) as 

Q91,3, Qg1+9,3, Q91+29,3,. ' .  > Qg1+(0--1)g,g. (71) 

From (70) and (71) it follows that 

(72) 

The formula (75) describes the key formula for the rescaling 
algorithm. Note that from the definition of 91, it follows that 

# 0 for all j .  However, ~ ~ ~ + ~ , 0  can be zero and (75) is 
applicable when og l+g ,~  # 0. 

In the case when Q ~ , + ~ , O  is zero, we encounter a singular 
case, and (75) is no longer applicable. For notational sim- 
plicity, we shall describe the new recursion assuming g1 = 0. 
Rewriting (70), it follows that one can compute the coefficients 

uniquely from (69). Note that the singular case corresponds 
precisely to the case when Pg = 0. We shall now assume that 
P k l  # 0 and P k z  # 0, where k1 and k2 are some multiples 
of g. 

If /3kl # 0, it follows that 

However, since Po # 0, we also have 

Xn - Xo Q O J  

An+, X j  Qn,o. 
~ -~ - 

Comparing (77) and (78) we obtain 

Analogously, we show that 

From (79) or (80) we can write 

(79) 

Also 

Combining (82) and (83) we have 

where 

Note that $(a )  is computable for every j = 0 , 1 , 2 ,  + + . . If 
s = g we have a recursion similar to (75). Otherwise we 
define El = kz and kz  = s and write XI = ?i&f?. Finally, we 
repeat the computation described in (82) and (83) and rewrite 
a recursion for A,+,. The procedure is continued until s is a 
factor of both kl and k2. If s = g, we stop. Otherwise, we 
choose a k3 such that /&, # 0. 

Eventually since g is the g.c.f. of all { k : p ~ ,  # 0} U {n } ,  it 
fallows that the algorithm will produce a recursion for A,+, 
of the form 

- 

where 4 * ( ~ )  can be computed. 

procedure described above. 
(78) The following examples illustrate the use of the rescaling 
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Example 5.1: Consider the system given by (IO) with 

The first five outputs of this system are given by 

Suppose that we observe these outputs scaled by 

(So . . . 64) = (1 2 3 1 2). 

Thus, we observe q k  = 6 k X k  given by 

3 -2 15 3 26 
-1 10 9 13 38 (40 * ’ .  q4) = 

We now rescale the output using the algorithm just developed. 
We calculate the coefficients Q k , j , j  = 0,1 ,2 ,  k = 0 , l  to be 

(91) 
6 1 4  ) = (; f ;). a0,o N 0 , l  Q0,2 

Q l , O  Q1,l Q1,2 

Note that all the coefficients are nonzero, and thus we may 
use the formula given by (95). We choose XO = XI = 1 and 
find the remaining rescale factors to be 

Xz = $, A3 18, = 8. (92) 

After rescaling the output as W k  = X k q k ,  we have 

(WO * e *  

By comparing (93) with the original output (88), we see that 
the rescaling represents a scaling of the original output by 

(So 64) = ( 1  2 4 8 16). (94) 

Since 61 = 2 and 6, = S:, it follows that g = 1. By Lemma 
3.8, such a scaling preserves the Hankel rank. 

Finally, we also conclude from (14) that the set of all 
realizations perspectively equivalent to (87) and preserving 
n = 2 , 9  = 1,gl = 0, is given up to changes of basis in the 
state space by 

where XI, X2, X3 are nonzero real numbers. Alternatively from 
Section IV one can describe 

For various values of So and S1, the triplets in (96) are in the 
space of controllable realizations of the perspective system 
(87) that preserves n = 2,g = 1,gl = 0. 

Example 5.2: Consider the system in the previous example 
replacing A with 

A =  (p i), 
The first five outputs of this system are given by 

(97) 

Once again, we observe the outputs scaled by 

(So . . .  64) = (1 2 3 1 2) (99) 

and get 

In this case, we calculate the coefficients f f k , j , j  = 0,1 ,2 ,  k = 
0 , 1  to be 

Now al,, = OVj so the formula given by (75) is not valid. 
We return to (73), and setting k = 0 , j  = 1 , 2 ,  we derive the 
relationships 

”=($)(“) 
A3 ff0,o 

and 

We choose A0 = X I  = Xz = 1 and find the remaining rescale 
factors to be 

After rescaling the output as W k  = X k V k ,  we have 

3 -2  9 -6 27 
(WO . . .  w4) = 

Once again we compare the rescaled output (105) with the 
original output (100). We find that the rescaling represents a 
scaling of the original output by 

(So . . .  64) (1 2 3 6 9). (106) 

This sequence is of the form { 1, SI,  62, 61 62, 6; , . . .} where 
61 = 2,62 = 3. Hence we have 9 = 2 .  

The set of realizations of all perspective systems which 
preserve n = 29 = 2,gl = 0 is given by 

up to changes in basis of the state space. Note in particular 
that (107) is described by three parameters. 

We summarize the results of this section as follows. Given 
the perspectively observed output of a linear system, it is 
possible to rescale the output so as to preserve the Hankel 
rank of the original system and the invariants g1 and g. In 
the nonsingular case, the formula for generating the rescaling 
constants is given by (75). Formulas for the singular cases can 
be derived, and the method is outlined in (86). 
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VI MOTION AND SHAPE ESTIMATION AS 
A PERSPECTIVE IDENTIFIABILITY PROBLEM 

Cohsider the following problem of motion and shape esti- 
mation, well known in machine vlsion 

Problem 6 I A given planar textured surface is moving 
in discrete time following an affine recursion (109), where 
we assume that both the position of the surface and the 
parameters of the affine recursion are unknown. Assume that 
a camera produces a perfect image of the textured surface 
every instance of time. The problem of interest is to estimate 
the position and motion parameters of the surface from the 
observed time-varying image produced by the camera. 

The above problem has been considered in [3], wherein 
the motion is assumed to be described in continuous time. In 
this paper we now obtain analogous results when the motion is 
assumed to be described in discrete time. For basic motivation, 
an introduction to the problem, and a literature survey, we 
would like to refer the reader to [3] For a surface undergoing 
rigid motion and under perspective projection, the problem of 
motion and shape estimation has already been considered by 
Tsai and Huang in a series of papers [l], [12], [13], [14] In 
fact, their approach can be regarded as discrete-time analogue 
of the treatment in continuous time due to Kanatani [ 151 and 
Waxman and Ullman [2] 

We assume throughout this paper that we have a textured 
planar patch which faces a camera without any occlusion 
Furthermore, we assume that every point on the surface moves 
according to a certain affine recursion As a result of the 
motion of the individual points, the entire plane moves in time. 
In this section, we write down a recursion that describes the 
motion of the plane We also specialize the equation to a planar 
patch undergoing a rigid motion 

Let us assume that ( X ,  U, 2) is the world coordinate frame, 
wherein we have a plane defined by the equation 

2 = p X  + qY + r .  (1 08) 

We assume that p ,  q ,  r are functions of time. Furthermore, we 
assume that the motion field is given by the equation 

Xk+i AXk + b (1 09) 

where A is an arbitrary 3 x 3 matrix and b is a 3 x 1 vector 
given by 

a12 a13 

A = [ii: E;; m) (1 10) 

and 

b =  (bi 6 2  b y ) T  (111) 

x =  ( X  Y Z)? 

and where X is given by 

We would now construct a difference equation that describes 
the motion of the shape parameters p , q , r .  This is done as 
follows Let us homogenize the vector ( X  Y 2) as 
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and the vector ( p  4 r )  as 

and (109) as 

where 

*= (: :') 
From (1 13) and (1 14) it follows that 

(1 16) 

where Q: is any nonzero scalar. Equation (1 16) describes how 
the shape parameters change in time and is therefore called the 
shape dynamics. Note that the shape dynamics (1 16) evolves 
backward in time and describes the motion of the plane (1 08) 
as points of the plane follow the recursion (109). 

Note also that (116) is parameterized by 12 motion param- 
eters and initial conditions on three shape parameters. Thus 
there is a total of 15 parameters describing the shape dynamics 
( 1  16) for the affine motion. 

An important special case of the affine motion (109) is the 
case when A = e", where R is a skew symmetric matrix 
given by 

1 Pk = -ATP,+, 
a 

(1 17) 
-w2 -wy 

Under this assumption, the motion field (109) describes a 
rigid motion. Equation (1 16) is parameterized by a total of 
six motion parameters and initial conditions on three shape 
parameters. Thus there is a total of nine parameters describing 
the shape dynamics (1 16) for the rigid motion. We also note 
that in the case when A = e", the matrix A is nonsingular and 
therefore the shape dynamics can also be propagated forward 
in time. 

Assume that the surface described by (108) is textured, 
i.e., the intensity E(X, Y,  2, k )  of a point ( X ,  Y ,  2) on the 
surface at time k does not change along the solution of (109). 
We also assume that the camera is perfectly focused on the 
object surface, i.e., intensity from a surface on the object to 
the image plane is transferred unattenuated under the camera 
correspondence. The above two assumptions together imply 
that the intensity of a point along the solution of ( 1  09) does 
not change as the point is projected on the image plane. In this 
section we consider the projection to be described as follows. 
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Let (x,y) be the coordinates of the image plane obtained 
under the projection of a point ( X ,  Y, 2) on the surface of the 
object. We define 

where S E [0, f ]  and f is the focal length of the camera. Note 
that if S = 0 we obtain a viewer-centered projection. If 6 = f, 
we obtain an image centered projection. These two projections 
have been described in [ 151. Finally note that if S = f and 
f -+ 00, we obtain 

x = x ,  y = Y  (1 19) 
which is known in the literature [15] as the “orthographic 
projection.” 

We assume that every point of the plane (108) is projected 
via generalized projection (1 18). The “optical flow” equation, 
described as a recursive equation satisfied by the coordinates 
( X k ,  Y k )  of the projected point, can be written as follows: 

d l x k  f d 2 y k  f f d 3  
1 

-d7xk + - d g y k  + dg 

d4xk + d 5 Y k  i- f d6 
1 

-d7Xk + -&Yk + dg 

”lis1 = 1 

f f 

f f 
(120) Y k + l  = 1 

where 

and where 

The pair (1 16), (121) can be viewed as a perspective dynamical 
system in discrete time described by 

bi = bl - a136 

b; = b2 - a236 

b& = b3 - (a33 - 1)s 

and where 

in homogeneous coordinates. To summarize this section, if 
a planar surface undergoes affine motion, one can view the 
motion of the shape parameters as a dynamical system and 
the coefficients of the optical flow as the observation function. 
This gives rise to a perspective system (123), (124) that has 
the same form as introduced in (lo), (11). Note that motion 
parameters A ,  b parameterize the dynamics of the perspective 
system (123), (124). 

dg] (which 
we call the essential parameter vector) can be computed by 
observations of various features on the image plane. Once 
computed, it will be treated as the observation vector for 
(123). Finally, our goal in Section VI11 is to study the param- 
eter identification problem for (123), (124) as introduced in 
Section 111. In Section VI11 we shall also study as a special 
case the parameter identification of the perspective system 
(123), (124) when f = S and f + 00. This way we recover the 
case when the camera views feature points via “orthographic 
projection.” 

In the next section we show that the vector [d l  . 

VII. ESTIMATION OF THE ESSENTIAL PARAMETERS 

In this section, we shall consider the problem of estimating 
the essential parameter vector ( d l ,  . . . , d g )  up to a nonzero 
scale factor. Let e(%, y ,  k )  be the intensity function on the 
image plane produced by the moving plane (108). We shall 
assume that the intensity function remains invariant under the 
dynamics of the projected point given by (120). Let us define 

We shall now describe two different methods of computing 
the vector ( d l , . . . , d g )  . 

A. Computation Based on Optical Flow 

solution of the optical flow (120), i.e., 
We assume that the intensity does not change along the 

Equation (127) is an implicit description of the intensity 
dynamics on the image plane and is analogous to the intensity 

\ 0 0 - b g  - S a 3 3 /  dynamics derived in [ 3 ] .  Up to first-order terms one can 
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approximate (127) as follows: 

Equation ( 128) describes the intensity dynamics described 
backward in time. From (126) and (128) we have 

( d 7 5  + dsv + f d g ) ( e ( z ,  Y ?  IC) - e(z,  Y1 f 1)) 

= (e ,  e y )  

f (d1z + d 2 ~  + d 3 f )  - z(d7z f d8Y + d g f ) ]  (129) 
' [f(d4z + d5Y + d 6 f )  - y(d7z + d8Y f d 9 f )  

where 

wz1 Y, + 1) e, = A de(z, Y, IC + 1) e, = 
d X  dY 

The parameters ( dl , . . . , d g )  can now be computed up to a 
nonzero scale factor by solving linear equations (129) from 
data obtained from sufficiently many points on the screen. 

VIII. IDENTIFIABILITY RESULTS FOR 
MOTION AND SHAPE ESTIMATION 

In this section we shall consider the problem of parameter 
identification for the perspective system (123), (124). Recall 
from Theorem 1.7 that generically parameters can be identified 
up to action of the perspective group B described in (13) 
and (14). In fact, the generic se€ is precisely characterized 
by Assumption 3.1 and the fact that the integers n , g , g ~  are 
to be preserved. Additionally, since the matrices in the system 
(123), (124) have a special structure, one considers a subgroup 
of B that preserves this structure. 

Our analysis is based on considering three subcases of Prob- 
lem 1.6. These subcases are affine motion under perspective 
projection (1 IS), affine motion under orthographic projection 
(1 19), and rigid body motion under orthographic projection 
(120). In each case, we present a theorem describing the extent 
to which motion and shape parameters can be identified. In the 
case of perspective projection (118), one cannot improve on 
the result obtained for affine motion, thus the case of rigid 
motion is not considered separately. 

B. Computation Based on Dynamics of a Discontinuous Curve 

If we assume that at the time instance IC, the intensity 
function is discontinuous along the curve 

A. Afbe Motion Under Perspective Projection 

The most general case that we shall consider is that of affine 
motion (109) under perspective projection (118). We show that 
one can identify the motion and shape parameters up to a one- 
parameter family. This result is quite surprising since there are Y = I k ( X )  (130) 
15 motion and shape parameters and only eight independent 
output functions given by the coefficients of the optical flow. 
Thus by including the shape dynamics in our analysis, we 
obtain much stronger results than if we had only considered 
the optical flow (as has been the case in [15] and [2]). We 

on the image plane, the dynamics of the discontinuity curve 
(130) can be used to compute the essential parameter vector 
up to a nonzero scale factor. In fact from (120), (126), and 
(130) we have 

$J(Z,Y) = I k + I ( $ ( X ,  w)). (13 1) have the following theorem. 
Theorem 8.1: Consider the perspective dynamical system 

given by (123) and (124). Suppose that the coefficients of 
the characteristic polynomial of A are all nonzero. Suppose 
furthermore that the following genericity conditions hold: 

Up to first-order terms, we approximate (131) as 

1Ci(Z?Y) = 4 + l ( Z )  + =($(z?Y) - x). 
dIk+l 

(132) 

From (126) and (132) we obtain 

( d l  d2 " .  d9) 

dX 
-X 

- I k  
- f  

(133) 

( has rank 3 

where 

btT = ( h i  b', b k )  (137) 

and b:, bk,  and b$ are given by (125). If the set of vectors 
{ l o ,  [I,. . . , &+I} are linearly independent, then the parame- 
ters that can be locally identified via perspective observation 
are 

Equation (133) can be solved for the vector ( d l ,  . . d g )  up to ( A P ,  4 ,  Cl? c2, CY) (138) 
a nonzero scale factor, provided that the data has been obtained 
from sufficiently many points in the image plane. where c1? c2, c3 are defined as in (122). 
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Remark 8.2: We note that the condition in Theorem 8.1 that 
the coefficients of the characteristic polynomial of A are all 
nonzero ensures that the g.c.f. g in Lemma 3.8 is 1. Thus 
by Lemma 3.8, an output generated by a perspective system 
other than (123), (124) differs from & by only a scaling of the 
form 1, 6, S2, S3, . . . . The scaling generated by the perspective 
group E is precisely such a scaling. 

Proof of Theorem 8.1: It follows from Remark 8.2 and 
Lemma 3.8 that the parameters of the system (123), (124) lie 
in the orbit of the group E given by (13) and (14) acting on 
(A, A, 7’0). We now restrict the action of D to the case where 
XZ in (14) has been chosen to be 1. In fact, if there are other 
real nonunity eigenvalues of A ,  there are other choices of X2 

equal to the number of such eigenvalues (see [9] for details). 
In fact, if X is such an eigenvalue one can choose XZ = 1/X. 
Hence the parameter set (138) is ambiguous up to such finitely 
many choices of the group element Xz. 

Let A denote the 9 x 4 matrix in (124). In general, this 
group action changes the structure of the matrix A and A. 
We now determine the subgroup of GL(4) which preserves 
the structure. Clearly, parameters are identifiable up to orbits 
of this subgroup. We show that under the assumption of 
genericity (134)-(136), the only subgroup of GL(4) which 
preserves the structure of (A, A) under the action (1 3) is given 
by 

where all # O,a44 # 0. Let 

1 0 0 0  

Q = 0 0 1 0 .  (1 : : 
It is easy to see that 

Let &I = (ay) be a nonsingular 4 x 4 matrix, i.e., an 
element of GL(4). By the genericity condition (134), it may 
be concluded that AlQl has the same structure as A1 if Q1 
has the form 

(143) 

where 

(144) 

To ensure that QT1A1Q1 has the same structure as AI ,  we 
must have 

brTO = 0 and A*@ = 0. 

By genericity conditions (135) and (136), it follows that 
0 = 0. Thus Q1 must be of the form 

to ensure the special structure of A1 and AI. 
matrix is obtained by defining 

P = &&I, where Q, Q1 are given by (140) and (145), 
respectively. Thus we have shown that p defines the subgroup 
of GL(4) that preserves the structure of A and A. It is easy 
to see that the function b’/(r + 6) is invariant under this 
subgroup action. Thus the parameters (138) remain invariant 
under the subgroup action. Considering Remark 8.2, we may 
conclude that no two orbits of the G action under the restriction 
that XZ = 1 in (138) produce the same output [<I. Thus the 

Remark 8.3: By local identification, we mean that 
in a sufficiently small neighborhood of the parameters, 
( A ,  p ,  q,  c1, CZ, cg), there is no other parameter that would 
produce the same output sequence [ < j ] , j  = 0 , 1 , 2 , . . .  
described by (124). In fact if X is any real eigenvalue of 
A,X # 1, it can be shown [9] that there is another set of 
parameters (A* ,  p* I q* , c;, c;, c;) distinct from the above set 
which would produce the same output sequence (124). A* 
can be written as follows: 

The structure (139) of the 
- 

functions of (1 38) are locally identifiable. 

where 0 is the eigenvector of A corresponding to eigenvalue 
X and b’ is defined in (137). The parameters p* , q* , e; , e;, e: 
can be described likewise, but the method has been omitted. 

Remark 8.4: We note that by Theorem 8.1, it is possible 
to identify (locally) the motion and shape parameters up to 
the single scale factor expressed by the ambiguity of bi and T 

in the definition of c; (122). Furthermore, it is clear that this 
ambiguity is fundamental under perspective projection and, as 
such, is not removed by restricting the motion to that of a 
rigid body. Thus one cannot improve Theorem 8.1 under such 
a restriction. We have rigid body motion if in (1 15) we replace 
the matrix A with e”, where R is defined as in (108). Such a 
matrix A would not have a real eigenvalue other than 1. The 
parameters that can be identified globally in this case are 

(~l,w2,~3,~,~,cl,C2,c3). (146) 

Thus the only improvement of Theorem 8.1 under the 
restriction of a rigid motion is that the local identification is 
in fact global. 
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B. Afine Motion Under Orthographic Projection 

Orthographic projection is obtained as a special case when 
the projection (118) degenerates to (119). This happens pre- 
cisely when we assume f = S and take the limit when f + CO. 

In a physical situation, objects focused far away compared to 
its size are best modeled by orthographic projection. Under 
the above limit, (120) takes up the form 

x k + l =  
dixk + d2Yk + d3 

d9 

d9 
(147) 

d4xk f d5?& + d6 
Yk+l = 

where 

The parameters d7 and d s  in (120) are not observed. The 
coefficients of the optical flow (147) give rise to the following 
homogeneous output vector: 

1 
P G(P + "2) 

1 
4 -$ + "3) 

The perspective dynamical system (123)-( 125) degenerates to 

The perspective system (149), (150) has already been studied 
in detail in [3]. Analogous to the proof of Theorem 8.1, it can 
be shown that there is a subgroup of the general linear group 
GL(4) of the form 

(a;l a13 

ffll 0123 (151) 0 0 CY33 0 
ff43 ffll 

where all # 0,a33 # 0 such that (13) replaced by the 
subgroup (151) would preserve the structure of the system 
(149), (150). If we define 

Equation (152) describes a four-parameter orbit in the param- 
eter space. The following theorem shows that generically the 
orbits are identifiable. 

Theorem 8.5: Consider the perspective dynamical system 
given by (149) and (150). Suppose that the coefficients of the 
characteristic polynomial of A are all nonzero. Suppose further 
that the following genericity conditions hold: 

a13 # o  
bla23 - b 2 a l 3  # 0 

a12a23 - a13a22 # 0 
alla23 - a13a21 # 0. (153) 

Then it follows that parameters can be identified up to a four- 
parameter orbit of a subgroup of GL(4) described by (151), 
the orbit being described by (152). 

The proof of Theorem 8.5 is analogous to that of Theorem 
8.1 and is exactly the same as in the continuous time case. 
The reader is referred to [3] for details. 

C. Rigid Body Motion Under Orthographic Projection 

Finally, we consider the case where the motion (109) is 
restricted to that of a rigid body. We replace the matrix A 
by e", where R is given by (117). In this case we have 
nine motion and shape parameters and only six independent 
coefficients of optical flow. By exploiting the special structure 
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of the A matrix, we find that one can identify the motion and 
shape parameters up to a one parameter family and a sign 
ambiguity. 

Theorem 8.6: Consider the perspective dynamical system 
given by (149) and (150) with the restriction that A = e*, R 
given by (117). Suppose that the coefficients of the charac- 
teristic polynomial of A are all nonzero and that the system 
satisfies the genericity condition (153). Then the parameters 
that can be identified up to a sign ambiguity are 

a 4 3  

a l l  
*?-+-. (154) 

Proof: The additional constraint imposed by rigid body 
motion is that the matrix A be orthonormal. That is 

A ~ A  = I .  (155) 

Let us consider the orthonormality constraint in more detail 
for the first two rows of A. We have 

alla21 f a12(322 + a13a23 = 0. 

The expressions listed in (152) define a four-dimensional orbit 
in the 15-dimension parameter space. We may express the 
constraints given by (156) in this orbit as 

(156) 

-2a11 -2a12 

-2a21 -2a22 

-a13a21 - 0.110.23 -a13a22 - a12a23 a13a23 

(157) 

where 

(158) 2 2 2  y = 7r1 + 7r2 + 7r3 - 1 

and where TI, 7r2 ,  and 7r3 are free variables in the orbit. By our 
genericity assumption, the 3 x 3 matrix in (157) is nonsingular. 
Thus we must have n-2 = 7r3 = y = 0. And so, by (158) we 
have 7r1 = f l .  

We must check that under this restriction of 7r1, 7r2 ,  and 7r3, 

the orthonormality condition on A still holds. The orbit of the 
A matrix has been restricted to 

[a” a12 a131 [ all a12 fa131 
a21 a22 a23 H a21 a22 fa23 . (159) 
a31 a32 a33 &a31 fa32 a33 

Thus by inspection we see that the orthonormality condition is 
preserved. Finally, the parameters that can be recovered follow 
from (152) by requiring that 7r2 = 7r3 = 0 and 7r1 = f l .  

We conclude that the rigid body motion reduces the orbit 
of identifiable parameters from a four-parameter orbit to two 
copies of a one-parameter orbit. This result corresponds to the 
result in the continuous-time case (see [3]). 

IX. CONCLUSION 
In this paper we analyze observability and identifiabil- 

ity conditions for a perspective system and describe a new 
rescaling algorithm for perspective systems identification. The 
observability condition generalizes the well-known Hautus’ 
condition on the observability of linear dynamical systems 
(see [7] and [SI). The identifiability condition also general- 
izes concepts well known in linear dynamical systems via 
parameters that can be identified up to orbits of a group, 
provided they meet a certain genericity restriction and pro- 
vided the dimension p of the output vector is sufficiently 
large ( p  2 n - g1/g would suffice). In this paper we show 
that generically parameters of a perspective dynamical system 
can be recovered up to orbits of a perspective group. The 
structure of the perspective group, however, depends on n, 
the dimension of the state space and a pair of integers “g” 
and “gl” which can be computed from the parameters of the 
system. Furthermore, we show that generically g = 1 and 
g1 = 0. The results on parameter identification are applied 
to motion and shape estimation problems of a planar surface 
undergoing affine or rigid motion. 

As a final remark we would like to point out that in this 
paper we have approached the problem of perspective system 
identification by posing and analyzing the perspective system 
realization problem. The analysis has been carried out for a 
discrete-time system as opposed to that of [3], where this was 
done for a continuous-time system. We note in passing that 
discrete-time realization theory of perspective systems appears 
to be more complicated than its continuous-time counterpart 
because of the role played by the pair of integers g and 91. 

These do not have a corresponding analogue in continuous 
time. 
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