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Geometry and Control of Human Eye Movements
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Abstract—1In this paper, we study the human oculomotor system
as a simple mechanical control system. It is a well known physio-
logical fact that all eye movements obey Listing’s law, which states
that eye orientations form a subset consisting of rotation matrices
for which the axes are orthogonal to the normal gaze direction. First,
we discuss the geometry of this restricted configuration space (re-
ferred to as the Listing space). Then we formulate the system as a
simple mechanical control system with a holonomic constraint. We
propose a realistic model with musculotendon complexes and ad-
dress the question of controlling the gaze. As an example, an optimal
energy control problem is formulated and numerically solved.

Index Terms—Eye movements, geodesics, Hill model, Listing’s
law, simple mechanical control systems.

I. INTRODUCTION

IOLOGICAL systems are becoming more appealing to ap-
B proaches that are commonly used in systems theory and
suggest new design principles that may have important prac-
tical applications in manmade systems. The principles of con-
trol theory are central to many of the key questions in biological
engineering. Eye movements, for an example, reflect how the
brain and the musculotendon system work in unison to control
the gaze directions while ensuring that attitudes are confined to
a certain subset so as to avoid entanglements of blood vessels,
nerve fibers etc.

Modeling the eye plant in order to generate various eye move-
ments both normal and symptomatic, has been one of the impor-
tant goals among neurologists, physiologists, and engineers for
a long time. Since as early as 1845 (e.g., work of Listing, Don-
ders, Helmholtz etc.), physiologists and engineers have created
models in order to help understand various eye movements (see
[1]). The precise coordination in muscles when the eye is rotated
by the action of six extra-ocular muscles (EOMs) (see Fig. 1),
has been an important topic in treating various ocular disor-
ders. The eyes rotate with three degrees of freedom, making it
an interesting yet simpler problem compared to other complex
human movement systems. By comparison, 24 muscles and ten-
dons have to be taken into consideration for a two dimensional
simplification of human walking [2].

Previous studies which used modeling as a means of un-
derstanding the control of eye movements have adopted two
main approaches. One focusing on the details of the properties
of the EOMs (i.e., biomechanically “correct”) [3], [4] and the
other focusing on control mechanisms using oversimplified
linear models with all the details of the above EOM properties
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Fig. 1. Anatomy of the eye (courtesy of Yale University School of Medicine).

ignored but focusing on the information processing and control
aspects [5], [6].

In spite of several notable studies of three dimensional eye
movements, there has not been a rigorous treatment of the topic
in the framework of modern control theory and geometric me-
chanics. Assuming the eye to be a rigid sphere, the problem can
be treated as a mechanical control system and the results in clas-
sical mechanics and modern nonlinear control systems can be
promptly applied. The geometric structure of mechanical sys-
tems, in general, gives way to stronger control algorithms than
those obtained for generic nonlinear systems [7]. Thus the ap-
proach proposed here takes the advantage of richly developed
disciplines of mechanics as well as control theory. In the area
of mechanics, unlike the classic approach by [8], recent works in
[9]-[13] and [14] develop a geometric theory with Lagrangian
and Hamiltonian viewpoints. On the other hand control theory
consists of a large as well as elegant collection of literature
and specially beginning late 1970s, the works of [15], [16], and
[17], etc., have introduced geometric tools to nonlinear control
problems.

The discussion in this paper may be viewed as an attempt to
study and model the eye movement system as a “simple mechan-
ical control system” [9]. Such a model in isolation may only be
an academic exercise. However, it can have both clinical utility
in treating ocular disorders, and scientific importance in under-
standing the human movement system in general.

From a functional viewpoint only the rotational aspects of the
eye movement are interesting, hence it is natural to start with
SO(3), the space of 3 x 3 rotation matrices, as its configura-
tion space. However, from a physiological viewpoint, only the
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gaze direction vector is of primary importance, and the orienta-
tion of the eye is otherwise secondary. From simple geometric
reasoning it follows that each gaze direction of the eye corre-
sponds to a circle of rotation matrices in the configuration space.
Thus, there is an ambiguity as to which rotation matrix is to be
employed to produce a particular gaze direction. Listing’s law
describes precisely how this ambiguity is resolved: all rotation
matrices employed have their axes of rotation orthogonal to the
standard (or frontal) gaze direction [18]. Thus, the dynamics of
the eye may be treated as a mechanical system with holonomic
constraints, which in essence limit the configuration space to
be a two dimensional submanifold of SO(3). We will refer to
it as the Listing Space. We will first describe basic geometric
features of the Listing Space. This will enable us to formulate
dynamic equations of the eye motion using various neuro/mus-
cular models. We make the following fundamental assumptions
throughout this paper.

* The eye is a perfect sphere.

¢ All eye movements obey Listings law.

We remark here that the second assumption pertains to all eye
configurations throughout its motions, and not just on the initial
and final points of an eye movement. Also the first assumption
may be removed completely at the expense of a slightly more
complicated system of equations.

There have been several notable studies on the geometry of
eye rotations in the past (see e.g., [19]-[22]). In particular, [19]
describes this geometry using Lie theory, as the quotient space
SO(3)/S0O(2). We point out here that the Listing space isn’t
actually diffeomorphic to SO(3)/SO(2), but in fact is equal to
a submanifold of SO(3) which is diffeomorphic to the two di-
mensional real projective space. As far as we are aware our study
is the first to explicitly describe the Riemannian geometry of the
submanifold of Listing rotations precisely. This then will enable
one to formulate dynamic equations of the eye movements using
various neuro/muscular models.

II. NOTATION AND TERMINOLOGY

Let us begin with the space of quaternions (see [23]) denoted

by Q. We write eacha € Qasagl +a1 i +azj +aszk,
— — — —

call ay i + a2 j + ag k its vector part, and ag 1 its scalar

part. The vector a; i + as j + as k will be identified with

(a1,az2,a3) € R3 without any explicit mention of it. When there

is no confusion we drop 71 from the scalar part, and simply
write it as ag. The vector part of a quaternion a will be denoted
by vec(a), or simply by a, and the scalar part will be denoted
by scal(a). Thus, we have the two maps

vec:Q —R3 ar— (a1,a2,a3)

and
scal : Q — R,

a +— ag.

Space of unit quaternions will be identified with the unit sphere
in R*, and denoted by S2. Each ¢ € S® can be written as ¢ =
cos(a/2) T +sin(e/2)ny 1 +sin(e/2)ns § +sin(e/2)ns K,
where, o € [0, 7] and (n1, n2, n3) is a unit vector in R3. We de-
note by rot the standard map from S into SO(3) which maps

— — — —
cos(a/2) 1 +sin(a/2)n; 1 +sin(a/2)ne j +sin(a/2)ng k
to a rotation around the axis n by a counterclockwise angle .
There are two explicit ways of describing this map. First, it is
easy to verify that

i iy T\ —
rot(q)(vi, vz, v3) = vec(q.(v1 i +v2 j +usk).g7).
Second, we have the equation shown at the bottom of the page.

III. LISTING MANIFOLD IS DIFFEOMORPHIC TO THE
PROJECTIVE SPACE

Listings law states that all eye rotations have an axis or-
thogonal to the primary gaze direction. If we were to take the
(21,2, z3) axes such that 23 axis is aligned with the normal
gaze direction, then Listing’s law amounts to a statement that
only eye rotations allowed by the physiology are those that fix
an axis orthogonal to [0, 0, 1]’, i.e., that all eye rotations have
quaternion representations ¢ € S3 with g3 = 0. We denote
by List, the subset of SO(3) which obey Listing’s law. More
specifically

List = ¢ R € SO(3)|3v = [v1, v2]
U1 U1
€ R2\{0} 5 R Vo | = | v2
0 0

In this section, we will show that List is diffeomorphic to the
projective space RP2. Let us now consider the map

emb: R? — 93
(z1,22,23) = [1 @1 x2 a3)T[1+ [Jof|?] 2

where we note that emb(z) is the quaternion which describes
a rotation around (1/||z||)z by an angle 2 arctan(||z||) (where
the angle is chosen to be in the interval [0, 7)). The ambiguity

0 is resolved by mapping it to 7. Therefore, each
vector with zero x3 coordinate describes a unique Listing ro-
tation. However, those Listing rotations with an angle of ro-
tation equal to 7 are missing here. Let us observe that a ro-
tation by 7 around an axis n is identical to a rotation by an

at r =

@+ai—a—a
2(q192 + q093)
2(q1q3 — qoq2)

rot(q) =

2(q1q2 - (J0q3)
@+a—ad-a
2(q2q3 + qoq1)

2(q193 + q092)
2(q2q3 — qoq1)
B+a-a-a
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angle —7 around —n. Thus we may describe List by appro-
priately compactifying R3. This compactification is best under-
stood in the following way. Let us start with R* with coordi-
nates (zo,x1,x2,23) and consider the usual projective equiv-
alence relation that would collapse one dimensional subspaces
to points. This way, each (z1,72,23) € R? is identified with
the equivalence class of (1,1, z2,x3), hence associated with
the unique rotation of emb(z1,z2,x3). Equivalence classes
of (0,x1,x9,23) are uniquely associated with rotations by an
angle of m or —=. This association is unambiguous since rota-
tion by 7 and —7 around the unit vector n amounts to the same
rotation matrix in SO(3). Thus we conclude that the space List
is diffeomorphic to RPZ.

This identification provides an obvious way to come up with
local coordinates on List. However, it turns out that the descrip-
tion of a natural Riemannian metric on List is quite awkward
using these coordinates. Hence, we will use an axis-angle local
coordinate system to carry out most of our computation. The
two local coordinates (6, ¢) describe the polar coordinate angle
of the axis of rotation in the (z1,22) plane and the angle of
rotation around the axis, respectively. Here, we take (6, ¢) €
[0, 7] x [0, 2]. Of course, we must keep in mind that these fail
to be local coordinates when ¢» = 0 or ¢ = 2 since in these
cases the corresponding rotation is the identity regardless of the
value of 6.

IV. RIEMANNIAN METRIC ON List

We have seen in the previous section that eye rotations are
confined to a submanifold of SO(3). In order to write down
equations of motion, one needs to know the kinetic and potential
energies of the eye in motion. The former is given by the induced
Riemannian metric on the Listing submanifold, induced by the
Riemannian metric on SO(3) which corresponds to the moment
of inertia of the eye ball. We carry out the computation of this
induced metric in this section.

Here, we assume that the eye is a perfect sphere, and its inertia
tensor is equal to [3,3. This is associated with the left invariant
Riemannian metric on SO(3) given by

(2(e:), e = 655
where
0 03 —Ook
Qex) = | —O3x 0 01,k
02 —O1k 0

and {6;,m } denotes the Kronecker delta function. An easy way

to carry out computation using this Riemannian metric is pro-
vided by the isometric submersion rot. Notice that i, j, k

is an orthonormal basis of TT S3, and

cos(t/2)
sin(t/2)

_ tQ(er)
0 =e
0

rot
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rcos(t/2)7
0 — 19e2)
sin(t/2)
L 0
rcos(t/2)7
8 — ot9es)

L sin(t/2) J

rot

rot

Hence, it follows that rot - i = 2Q(ey),rot - j =

*
—

rot _, k =

{rot _)T/2,rot _>T/2,rot _>E)/2} is an  or-
thonormal frame in*TId(SO(?))). Now, since rot is equivariant
under left translations, and Riemannian metric on SO(3) is left
invariant, it follows that {rot*qT/2, rot*qT/2, rot*qE)/Z}
is an orthonormal basis of T, (4)SO(3) for all ¢ € S3.

2Q(ez)  and

g3 ref SO(3)
! !
TS 2% Tooe)SOE3).
Let us now use the orthonormal frame
— — —
{g-1/2,9.5 /2,9. %k /2} of T,S* to compute the

Riemannian metric on List induced from SO(3). We define

911=<
912=<
922=<

Let p : [0,7] x [0,27] — S3,

\/

ey

%\’Jm %}|Q; &i|m
NEREES
\/

\/

cos(/2)
cos(f) sin(¢p/2)
sin(6) sén(¢>/2)

p(0,6) =

This can be illustrated as follows:

List - S°
! !
TopList 25 T,.4)5°
Then
7606.0= (s (55) »(35))
0 ~Lsin(¢/2)

_ | —sin(f)sin(¢/2) % cos(6) cos(¢/2)
cos(6) s(;n(¢>/2) 5 sin(&)gos(gb/?)
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Using quaternion multiplication, we compute the follow-
ing [23]:

[ —cos(f)sin(¢/2)
0(6,0).T cos(#/2)

L —sin(f) sin(¢/2)
r— sin(@)osin(¢>/2)
+J cos(¢/2)
L cos(6)sin(4/2)
r 0

sin(#) sin(¢/2)
—cos(f) sin(¢/2)

cos($/2)

Then, for # = 0, it is easily observed that

p(0,¢)

(0,6). K

pe06) (o) = S(9/2) cos(6/2)0(0,6). T
— sin?(9/2)p(0.9). K

ryd
A

7]

ﬂ*(o,¢)(%) = %P(Oy )

Hence, we have
(1, 0) Ligr = (Pr(0,0) (1), pa(0,0) (V) 53, w,v € Teo ) List.

Therefore, using the relations given in (1) we obtain

g1 = sin®*(¢/2)

g12 =0
1
g22 = Z

Thus, the Riemannian metric on List is
.2 2, 1.9
g =sin“(¢/2)do” + quﬁ .

Notice that this expression is singular at ¢ = 0. This represents
the fact that (6, ¢) fail to be local coordinates around ¢ = 0.

V. GEOMETRY OF THE LISTING SPACE

A. Connection on List

Now, we compute the Riemannian \index {connection }con-
nection V, on List. Even though one may carry out all
derivations of equations without the need of explicit formulas
of the associated Riemannian connection, this would leave the
geometric description of the Listing space incomplete. Among
other things, this description of the connection would enable a
straightforward computation of the geodesics and the curvature
of the Listing submanifold. It is well known that V is uniquely
defined by the formula (see [24])

2AVxY,Z) = Lx(Y, Z) + Ly(X, Z) — Lz(X,Y)

?

—(X,[Y, Z]) - (V,[X, Z]) + (Z,[X,Y)).
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Let us use subscripted coordinates (y1, y2) to denote (6, ¢). The
Riemannian connection V can be described in local coordinates

(y17y2) via
v{')yi/ayj = Ffja/ayk

where Ffj are the Christoffel symbols [25]. They can be calcu-
lated using the following standard formula:

2 .
=y g {3.%]' n gk agjk}
“ W1 2 8yk ayj ayh

where i,j,k = 1,2 and the associated symmetry properties.
Here, we have
and

(9i3) = <911
= (2 )2 ()

921
Thus, we obtain the following expressions for the Christoffel
symbols:

922 0

912) _ <Sin2(¢/2)

= O

e}

Fh =0 F%1 = —sin(¢)
1 1
Mn,=—— r=——
127 2tan(¢/2) ' 2tan(¢/2)
7,=0 I3, =0
Iy, =0 TI3,=0.

B. Equations of Geodesics on List

The Riemannian metric g computed in the Section IV gives
the kinetic energy of the eye in motion. Elastic energy in the
muscles that control the eye movement will represent the poten-
tial energy. In this section we aim at deriving paths taken by the
eye if we were to disregard the potential energy; the geodesics
of g. They will represent shortest paths between points in List
(equivalently gaze directions) in the context of Riemannian ge-
ometry. We will bring in the potential energy and derive con-
trolled paths using optimal control theory later on.

Along the geodesics, tangent vectors are parallel with respect
to the Riemannian connection V. Let o(t) = (6(¢), #(t)) be a
geodesic on List. We would have

V&(t)d(t) =0

where

and
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Listing Geodesics|

N

L

—l7r/2 /2
Fig. 2. Geodesics emanating from (7 /4, 7/4).
Hence, we would have
N R B o
9% + ¢8_§Z§ +40 V%%
. B B .2 B
+0¢<V%Q_¢+V%%)+¢ V%8—¢—0
Using

50 Pt 8¢
R d 1 9
— = Tk — —-
V%aqs kZ:l 29y 2tan(¢/2) 00
N T S )
3500 = 'Oy, 2tan($/2) 90
- 9
Vo—=9ST% =0
7 0¢ kzzl 2y

where (y1,y2) = (6, ¢), we obtain the equations of geodesics
given as follows:

. 1 ..
0+ —tan(¢/2)9¢: 0

¢ — sin ¢pf% = 0. )

As an illustrative example, Fig. 2 displays the geodesics ema-
nating from (7 /4,7 /4) in the Listing space.

C. Curvature

As we have seen already, the Listing space is a two dimen-
sional manifold, hence an explicit description of its Gauss cur-
vature would provide an intuitive picture of its shape. This turns
out to be specially true (and somewhat surprising) in our case
since the Gauss curvature ends up being a constant. Thus, one
may visualize List locally as a standard two-dimensional sphere.
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From the Christoffel symbols we may compute the Riemann
curvature tensor R. In terms of the basis! {Jg,d,}, curvature
can be written as

R(9p,04)09 = V,Va,00 —Vo,Va,0s
since [0y, 0] = 0, which evaluates to

R(9g,04)0p = — sin?(/2)0y
1
R(3g,05)09 = - 0p.

In particular, the Gauss curvature is given by

- (R(9,04)0509)
K(9,¢) = WW

=1

since

1
[a¢>a¢] - Z

D. General Equations of Motion

Let us write down a potential function in the form V' (6, ¢)
and generalized forces 7y, 7,. Now the Lagrangian is

L(0.6.0.9) = Slonf® + gnd’) ~V(0.0). O

Hence, from Euler—Lagrange equations, we obtain the equations
of motion

. o
0+ 0 cot(d/2) + csc2(gb/2)%v = csc?(¢/2)7s
. B
¢ — 07 sin(¢) +4——V = dr,. 4)
¢
Notice that when V(#,¢) = 0, i.e., when the Lagrangian
becomes only the kinetic energy, and no forces acting on the
system, (4) reduces to that of geodesics given in (2).

VI. OPTIMAL CONTROL

In this section, we discuss the formulation of the eye move-
ment problem as an optimal control problem. We need to incor-
porate potential energy, muscle forces and damping forces to the
model here. There are two sources that contribute to the poten-
tial energy; any stored energy due to eye rotation, and energy
stored in muscles themselves. The latter has been adequately
addressed in existing muscle models. However, there is no dis-
cussion in the existing literature on an appropriate formula for
the potential energy, and in fact many derivations ignore it com-
pletely. In the discussion below, we propose to use two standard
muscle models, a simplified linear muscle model as used in [5]
and a biomechanically accurate Hill type nonlinear model [26],
[27]. Instead of ignoring the stored energy in the eye rotation
itself, we fix it quite arbitrarily at (1/4) sin?(¢$/2) to represent
the fact that frontal gaze direction is the most natural one, and

'We use the short notation 8 = (9)/(d6)
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as experienced by all of us, rotations by larger angles are in-
creasingly more difficult. Of course we make no claims on the
validity of this potential function, and we use it only for illus-
trative purposes. It is straightforward to replace this particular
expression with any physiologically realistic expression when
such formulas become available. Another source of arbitrariness
in our model is the formulation of the optimal cost function. It
is quite standard in biomechanical studies to take the integral of
the square of the euclidean norm of muscle activation forces as
the cost function (see e.g., [28] and [29]), and we do the same
here.

We present three versions of dynamic models with increasing
level of complexities. In the first one, we only include poten-
tial energy due to eye rotations alone, and set it arbitrarily at
V = (1)/(4)sin®(¢/2). The cost function is taken to be the in-
tegral of the square of the euclidean norm of generalized torques
in the 6 and the ¢ directions. The control objective is to control
from a given initial gaze direction to a desired final gaze direc-
tion in 7" units of time. Of course this model is highly unreal-
istic, and only presented for illustrative purposes for the benefit
of the readers who may prefer a gentle introduction. The second
version adds linear elastic muscles [29], and use a cost function
equal to the integral of the square of the euclidean norm of the
muscle activation forces. The third model represents muscles
using the nonlinear Hill model [26], [27] and uses a cost func-
tion equal to the integral of the square of the euclidean norm of
the muscle activation forces. In each case, we use the maximum
principle to derive necessary conditions in the form of two point
boundary value problems, and Matlab routines are used to nu-
merically solve them. We have not explicitly verified that the
numerically obtained solutions are indeed optimal. However,
noting the fact that the curvature of List is equal to one, it fol-
lows that for initial and final points which are not too far apart,
there will be unique extremals joining them, and they are nec-
essarily optimal.

A. Case I: Generalized Torques

For the sake of illustration, we take the potential energy as
V (8, ¢) = (1)/(4)sin?(¢/2). It follows from (4) that

0+ 6 cot(¢/2) = csc®(¢/2)Ts
¢ — 0%sin(¢) + %sm(@ = 4y, 5)

Let [21, 22, 23, 4]’ = [0, 6, ¢, $]', then (5) can be written as

Z1
d Z9
dt | z3
Z4

z2
—Z224 COt(23/2)

0
csc?(z3/2)
0
0

Ty +

23 sin(z3) — 5 sin(z3)
0
0
0| 7
4
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Assume that we wish to control the state (6,6, ¢, ) from
(60,0, ¢0,0) to (A1,0,¢1,0) in T unit of time, while mini-
mizing the control energy

/0 [(ro(£))2 + (5 ()],

Denoting the costate variable by “)\,” let us construct the Hamil-
tonian as follows:

H(z,\) = Az — % [792 + Tg]
= )\12’2 — /\2222’4 COt(Z3/2) + )\324
1
+ Ay2z3 sin(z3) — §A4 sin(z3)
A2
* sin?(z3/2)
1
- 5((Te(t))2 + (15(1))%).

From Hamilton’s equations

T + 4)\4T¢

Lo o
oM T 0z
we obtain
- - [ z2 1
zl — 2924 cot(23/2) + csc?(z3/2)7)
2
24
d zi - 23 sin(z3) — %Osin(z;;) + 47}
dt il —)\1 + )\224 COt(23/2) — 2/\422 sin(23)
)\2 (—%/\22224CSC2(23/2) — /\4Z% COS 23+
)\3 $A4co8(z3) + Az cot(z3/2)csc?(23/2)75)
- L )\222 COt(Z3/2) — )\3 J

The optimal values of the controls are obtained from the max-
imum principal as follows:

9] 9]
—H =0 H =0
87‘9 87'4)
which implies that
A2
T = —————
"7 sin%(23/2)
Ty = 4)\4.
Eliminating the control, the state—space system is given by
M 21 ] B Z9 1

2.’2 —Z9Z4 COt(Zg/Z) + /\QCSC4(23/2)

23 z4

Zg| _ 23 sin(z3) — 3 sin(z3) + 16A4

M| T 0

A2 —A1 + Aazg cot(z3/2) — 2A422 sin(z3)

Ao A

_)\4_ L )\222 COt(Zg/2) — /\3 .
where
1

A= —5/\2222’4CS02 (2’3/2) — /\42% COS Z3

1
+§)\4 cos(23) + A3 cot(z3/2)csct(23/2).

Fig. 3 shows an example of an optimal path in the Listing space
and in Fig. 4, Fig. 5 we show the variation of 6, 0, ¢, ¢ over
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08— Gaodesic | r T T ; T T T
—— Optimal 7

07+

06

04

03+ 1

0.2 1 ! L L L L | | 1
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Fig. 4. 6 and ¢ as a function of time for the path in Fig. 3.

time. Finally, in Fig. 6, we show the corresponding torques 75
and 7.

B. Case II: Simplified Muscles

In this subsection, we consider a linearized model for each of
the three pairs of musculotendons that are actuating the eye ro-
tation. We would assume that each of the musculotendons con-
sists of a linear spring with spring constant k;, a damper with
damping constant b;, and an active force F;, where i = 1...6.
Our first task is to derive the generalized torques as a function
of the forces acting on the musculotendons. Let us describe the
changes in # and ¢ by § — 6 + 66 and ¢ — ¢.

The total virtual work performed by the spring, damper, and
the active forces would be given by

6

al;
Y Fi+ Gl df

i=
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25 T T T T T T T T T

— do/dt
— - do/dt

-25 1 L L 1 I L | I L
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

t

Fig. 6. 479,47, as a function of time for the path in Fig. 3.

where

Ci:ki(li_li0)+bi< o +é ¢> (6)

It would follow that the generalized torques 74 (and likewise 7)
are given by

6 al;
9= [Fi+Cilo;
£ a0
6 ol
5= [Fi+ Gilg, )
=1

The optimal control problem can be posed by requiring to
minimize

®

e
= F2dt.
2)o S
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Fig. 7. Optimal path and the geodesic in the (6. ¢) space from (7 /6, 7/6) to '
(7/10,7/10) for Case II. Fig. 8. 8 and ¢ as a function of time for the path in Fig. 7.
0.5 T T T T T T T T
. . . — de/dt
We construct the Hamiltonian given by
H(Z,)\) = )\1252 - /\22224 COt(Z3/2) + )\3254 04 o~
4 - \ A
. 1, . i \
+ A\g23 sin(z3) — 5)\4 sin(z3) L \
s \
6 .7 ‘
)\2 811 e \
+ — F_|_C_ 03F - | 4
sin(zs/2) i—l[ ' i 00 P :
6 a1 (TS R |
+4X Fi+Cil— — = F?dt. 02 > g
4 Z[ ) z] 8(;5 2 0 Z T e 1[
i=1 1=1 e |
. . . N . . 7 '
From the ‘Maximum Principle’ we obtain the following: - \
- {
al; al; 01 -7 T
F* = Mgcsc(23/2) — + Ay —. 9 -7 !
i 2 (3/)80 ey ) - |
The generalized torques 74 and 7 can be computed from (7) (L~ . , . . , , ‘ ‘ l
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
and (9). We now proceed to find (9l;)/(06) and (9l;)/(9¢) as

follows. Let ¢; and p;(t) be the fixed end and the point of at-
tachment to the eye, of the muscle. Then, we have

() = (pi(t) — )" (pi(t) — @)

where p;(t) = Rp;(0) and R is the 3 x 3 rotation matrix. We
obtain

17 (t) = (Rpi(0) — ¢:)" (Rpi(0) — ;)
= pT (0)pi(0) + qiq} — 2pT (0)RT g;.

(10
Therefore
o, 1. [OR"
90— —D; (0) o0 qz/lz
ol; ORT
9 —p; (0) 9 i /l;- (11)

One can easily write down the system with state z and costate
A similar to the one obtained in (VI.A). In Figs. 7-10 the op-

timal path and the corresponding rectus muscle forces have been
shown.

—40 L I L 1 L L

Fig. 10.
muscles have not been shown in this figure.

30 T

—F

0.7 0.8 0.9 1

0.4 0.5

t

0.6

Four Rectus Muscle force variations for the path in Fig. 7. The oblique
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Fig. 11. Optimal path and the geodesic in the (6, ¢) space from (7 /5, 7/6) to

(7/10,7/10) for Case III Fig. 12. Lateral rectus muscle activity for the path in Fig. 11.

C. Case IlI: Hill-Type Muscles

Hill-type muscle models have been described in detail by
Zajak in [26]. Formulation of the optimal control problem fol-
lows very closely to that given in Section VI-B. One obtains the 5| : _
generalized torques 79 and 7, as follows:

Z total 89

Ty = Z totala¢ (12)

where

Fi _ F7’ F7 F7’ Bl l 0 0.‘02 O,:f)4 0‘::)6 0"08 0.1 0.12
total — t_( act+ pe+ mZ) t
. . Fig. 13. Medial rectus muscle activity for the path in Fig. 11.
The terms Fy, Fct, Fpe, B above are described in [29] and the g Y P &
superscript ¢ is the index for each muscle.

We would minimize the active force in the muscle F,(t) by

minimizing
2
/ Fl (t)] dt.

Fig. 11 shows the geodesic and the optimal path on the
Listing’s space. Parameters for oblique muscles were chosen
such that they have a very small activity and are not shown. In

0.6 T T T T

Figs. 12—15, we show only the corresponding rectus muscle [ i
activities.

As an example, in Table I we present, numerical results to o8 |
compare lengths of minimal eye rotations with and without the sl |

Listing’s constraint. In the case when the Listing’s law is ob-
served, we compute the geodesic distances as well as distances ; ; ‘ ‘
along curves that minimize the energy function considered in 0 0.02 0.04 0:’6 0.08 01 0.12
the Section VI.A (see Table I). Lengths of eye rotation using the

Hill type muscles have not been shown here. Fig. 14. Superior rectus muscle activity for the path in Fig. 11.
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Fig. 15. Inferior rectus muscle activity for the path in Fig. 11.
TABLE 1
COMPARISON OF LENGTHS OF EYE ROTATIONS
From To distance (radians)
(6, ¢) (6, ) SO(3) | Geodesic | Min. energy
on List on List
(55 | (5. 8) 0.219 0.222 0.324
us us us us
(E, g) (§7 E) 0.359 0.368 0.368
(5, 70) | (. %) 0.476 0.480 0.482

VII. CONCLUDING REMARKS

In this paper, a relatively complete description of the Rie-
mannian geometry of the space of eye rotations subject to the
Listing’s law is given. It is shown that the configuration space is
diffeomorphic to the real projective space RP? and has constant
positive curvature equal to 1. The system is presented as a simple
mechanical control system subjected to a holonomic constraint
(provided by Listing’s law). Table 1, is given merely to get anidea
of the trajectory that eye would choose when directing the gaze
from one direction to another. It is not the shortest path obtained
on SO(3), but a different path under the Listing constraint.

Different models of musculotendons, as well as how to com-
pute the torques derived from the forces in these musculoten-
dons on to the configuration manifold List, are also discussed in
Section VI. In particular, few examples with different musculo-
tendon complexes are given merely to propose possible control
strategies of the motor cortex. It remains to be validated by ac-
tual eye movement and neural recordings which control strategy
the brain really undertakes. We found that such experimental
data is hardly available as yet. If saccadic eye movement (the
rapid eye movements which are the fastest movements of an ex-
ternal part of the human body with peak angular speed reaching
up to 1000 degrees per second) is the topic of interest, the likely
strategy would be to minimize the time instead of energy.
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