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Abstract—Microcircuits in the visual cortex of freshwater
turtles have been revisited. These consist of a model of the retina,
the lateral geniculate nucleus (LGN) and the visual cortex. In this
paper, we present, via simulation how visual input on the retina
is subsequently processed by the LGN leading up to an input
to the cortex that generates a wave of activity. To gain access
to the information content of the cortical wave, we analyze the
extent to which these waves are able to discriminate the motion
direction of the targets. The results are displayed in terms of root
mean square error. We also show, via simulation, the role of the
geniculate nucleus in terms of noise suppression. In particular,
we show that, without the geniculate complex, retinal noise is
strong enough to produce cortical activities without any form of
target inputs. For realistic motion discrimination, it is imperative
that noise in the geniculate is suppressed.
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I. INTRODUCTION

This paper discuss the ongoing research work on neural
models of the visual system of the freshwater turtles. The
freshwater turtle visual system is similar to that of most ver-
tebrates. In fact, all vertebrate retina share a similar structure
(See [1] and [2]). Therefore, a turtle being a vertebrate can
be used to study the vertebrate visual system. Furthermore,
the structure of the turtle visual system has been extensively
studied and detailed models were developed and successfully
tested earlier.

A detailed model of the turtle’s retina and a retinal patch
is constructed [3] and a computational model for the lateral
geniculate nuclei (LGN) was developed (See [4]).

A general discussion of the cerebral cortex of reptiles,
including turtles is provided in [5], and a detailed discussion
of the visual pathways in turtles is provided in [6]. Nenadic et
al. in [7] provides a large scale model of the visual cortex.

A. Retina-Visual Cortex Model

The model of the Retina-Visual Cortex complex was de-
veloped initially without a complete model of the Lateral
Geniculate Nuclei in between [8] in order to compare the

Fig. 1: Cell distribution of the turtle’s retina. The white circle
in the center of the retina represents the retinal patch used in
this paper.

results of a model with LGN and study the effect of the LGN
in the Turtle’s visual cognition system.

The retina of the turtle’s visual system consists of over
360,000 ganglion cells. However, the retinal model used in this
paper consist of 520 ganglion neurons from a central patch
in the visual streak of the turtle’s retina [3]. The reduction
of model into 520 cells was necessary in order to work with
available computational resources. Figure 1 shows the location
of the patch in the turtle’s visual streak and the retina.

The retinal model consists of two types of ganglion cells
which are intensity sensitive A-Cells and direction sensitive
B-cells (See [3] , [9] and [10] for more details on the retina
model) modeled using Hodgkin-Huxley equations (See [11]).

The visual cortex model was constructed with 744 neurons
from a turtle visual cortex and a linear array of 201 LGN
neurons is used to feed the synaptic currents to the visual
cortex model. In this simulation study, a model in which the
retinal cells connected to the visual cortex through the linear
LGN cells in a linear fashion (See figure 2) was used.

Retinal cells were connected to the linear LGN cells of the978-1-4799-4598-6/14/$31.00 c⃝2014 IEEE



Fig. 2: Linear connection model. Black dots in the bottom of
the visual cortex represents the cells in the linear LGN used to
connect the two models. Only 17 out of 201 cells were shown
in order to preserve the clarity of the figure.

Fig. 3: The fused visual system model

visual cortex model based on their x-coordinates. Cells in the
left most vertical stripe of the retinal patch are connected to the
first LGN cell in the linear array through synaptic connections.
Cells in the next vertical stripe was connected to the second
LGN cell in the linear array and this pattern continued until
all the cells in the retinal patch was connected to the last LGN
cell in the visual cortex model.

B. Retina-LGN-Visual Cortex Model

A model of the LGN was constructed and described
in [4]. Comprising this LGN are 1166 Cell Plate and 112
Neuropile neurons, all modeled using Hodgkin- Huxley gov-
erned compartments and simulated using the GEneral NEural
SImulation System. Inhibitory synaptic connections are formed
from Neuropile cells to nearby Cell Plate neurons based on a
140-micron radius of influence.

Figure 3 shows the block diagram structure of the Retina-
LGN-Visual Cortex Model. The LGN model is integrated with
the same retina and visual cortex models as described in the

Fig. 4: Mapping between LGC and visual cortex sub models

TABLE I: Synaptic connection strengths in retina-LGN-cortex
model
(Key: ( ⃝ : Excitatory connection, ⊣ ⃝ : Inhibitory Con-
nection)

Retina ( ⃝ Cell Plates 9.0
Retina ( ⃝ Neuropiles 0.6

Neuropiles ⊣ ⃝ Cell Plates 0.7
LGN ( ⃝ Visual Cortex 1.0

previous section. General information flow is from the retina
model through the LGN to the visual cortex model.

To connect the retina and LGN models, the retina patch is
mapped to a 400-micron circular patch in the LGN model.
This patch encompasses 501 Cell Plates and 36 Neuropile
cells. Each Cell Plate neuron in the patch receives excitatory
synaptic connections from all retinal ganglion cells within a
15-micron radius. All Neuropile neurons receive excitatory
synaptic connections from ganglion cells within a 130- micron
radius.

Connection of the LGN to the visual cortex model is
achieved by dividing the LGN patch along the rostral-caudal
axis into 201 strips. LGN Cell Plates residing in strip i form
excitatory synaptic connections to member i of the 201 cell
Linear LGN which serves as a front-end to the visual cortex
model, as illustrated in the previous section. Figure 4 shows
this connection procedure. It is important to note that the
Neuropile cells do not exhibit synaptic connections into the
visual cortex model.

Synaptic connection strengths from the retina model to
the LGN were determined by progressive adjustment based
on model response to Gaussian noise generated by the retina
ganglion cells. Successful connection strengths were defined
by LGN suppression of Gaussian noise signals from the retina,
thereby preventing visual cortex response to noise in the retina
model. For Gaussian retina noise of mean 0 and variance
3.0 × 10−11, synaptic connection strengths given in table I
were found to be effective.



Fig. 5: Motion paths on retinal patch

II. SIMULATION SETUP & PARAMETERS

The simulation study comprised of simulating the two
models individually for 1.5 seconds using GENESIS neural
simulator software for a simulated light beam crossing the
retinal patch at a constant speed. Retinal membrane potentials
were recorded at each time step and later analyzed.

A zero mean and 3.0×10−10 variance Gaussian noise was
introduced to the visual cortex of the retina-visual cortex model
in order to perform the required statistical analysis. The retina
however, did not had any noise level in this model.

It was observed that if any source of noise was injected
into the retinal cells without the LGN being present, it causes
the Visual Cortex wave being started without any input present
in the retinal patch [8].

However, the model with LGN in the middle of the retinal-
cortex connection is subjected to Gaussian noise at both retinal
patch and the visual cortex. The retinal patch was injected with
a zero mean and 3.0× 10−11 variance Gaussian noise and the
visual cortex was injected with zero mean and 9.0 × 10−10

variance Gaussian noise level.

Both models were simulated with a simulation step size
of 5.0 × 10−3s using the GENESIS neural simulator for 30
iterations for each motion target. Motion path angle, which
is denoted by θ was changed from 0◦ to 350◦ at 10◦ steps
(See figure 5) making 36 different motion targets covering the
entire retinal patch. Simulation was repeated 30 times for each
motion path.

Figure 6 shows the ganglion cell membrane potential of
the retinal patch as a movie for 0◦ motion path and the
figure 7 shows the visual cortex cell membrane potential movie
corresponds to the same 0◦ motion path.

III. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is primarily used to reduce
the dimensionality of the data while retaining as much in-
formation as encoded in the original data set. This is done
by transforming the observed data into a new set of uncorre-
lated variables [12]. Even though the original Karhunen-Loeve
transformation is used for continuous variables [12], we will
be using a discretized variant of the original Karhunen-Loeve
transformation [13], [14].

Fig. 6: Retinal activity movie for 0◦ motion path. The noise
injected to the retinal model can be clearly seen as a light blue
ripple in the movie frames. Areas with high cell membrane
potential are represented in red color

The response waves in the visual cortex can be considered
as a movie consisting a sequence of frames, each showing
the visual cortex activity level in points in the visual cortex.
The information encoded in these waves can be encoded by
a two-step Karhunen-Loeve (KL) decomposition as described
on Nenadic et al. [13] and Du et al. [14]

In this analysis, a two-step KL-decomposition was applied
to the low pass filtered spike sequence with a sliding encoding
window. As shown in figure 8, the time axis is covered by equal
length, overlapping windows. The length of the sliding window
remains constant 100ms while the starting and ending position
of the window advances with time by steps of 10ms. As shown
in [14], each segment of the cortical response is mapped to a 6-
dimensional principal component in the B-space which creates
a sequence of points called a β strand when covered the whole
simulation time.

Cortical responses from both retina-visual cortex model
and retina-LGN-cortex model were used in PCA calculations
and PCA points of the retinal responses from the latter
model was also calculated for the sake of having a qualitative
comparison.

IV. RMS DETECTION ERROR

We model the β coordinates as a realization of a Gaussian
process, conditioned on the motion path angle and detect
the target motion direction using the maximum likelihood
estimator method [15].



Fig. 7: Visual cortex activity movie for 0◦ motion path. The
noise injected to the retinal model can be clearly seen as a
light blue ripple in the movie frames. Areas with high cell
membrane potential are represented in red color

Fig. 8: Sliding encoding window technique

We formulate the null hypothesis H0 as the sample of each
dimension of β coordinates comes from a normal distribution
vs. alternative hypothesis H1 that it does not come from a nor-
mal distribution and use a 5% significance level for rejecting
the null hypothesis [9] , [10]. This test is an adaptation of the
Kolmogorow-Smirnov test [16] and do not require specifying
the parameters of the target normal distribution. Failing to
reject the null hypothesis imply that the samples come from a
normal distribution.

The root mean square detection error is calculated using
a repeated random sub-sampling validation with 30 iterations
of the hypothesis testing. β coordinates from 25 randomly
selected simulation repetitions were used at each iteration to
train the algorithm and the remaining 5 was used to test and
calculate the detection error. This process is iterated 30 times
and the mean square detection error was calculated over the
detection errors of all 30 iterations. The RMS detection error
was calculated for cortical PCA points of both models and the

Fig. 9: Mean square detection error at t = 120ms

Fig. 10: Mean square detection error at t = 350ms

retinal PCA points of the Retina-LGN-Cortex model.

V. RESULTS AND CONCLUSION

The mean square detection error of the two models along
with the retinal patch is shown in figures 9, 10 and 11 for
t = 120ms, t = 350ms and t = 500ms respectively. These
three times are selected so that, it corresponds to the input is in
the beginning, middle and at the end of the retinal patch. Here
t is taken as the time after a wave started in a particular model.
Since the wave starts at different simulation times in retina and
cortex of each model, t is measured after synchronizing the
wave starting times.

From figures 9, 10 and 11 the RMS detection error of
the retina seems very low throughout the simulation. This
result complies with the results given in [9] and [10] in a
similar simulation setup. This means that the retina shows
excellent motion path discrimination capability under noise.
However, when the retina is connected to the visual cortex with
or without LGN, and the cortical responses are used for the
detection problem, it shows higher detection errors regardless
of the model used.



Fig. 11: Mean square detection error at t = 500ms

The RMS detection error plot at 120ms (Figure 9) does
not show a stable error plot for the two visual cortex plots
since the wave has just started in the visual cortex. This can
be clearly seen from the visual cortex activity movie illustrated
in figure 7 at the corresponding frame 360ms . Similarly, at
500ms the cortical wave shows a bursting behavior over the
entire visual cortex which seen in figure 7 at the corresponding
frame 780ms . The detection error tends to rise rapidly around
this time.

The model without LGN shows a better detection accuracy
over the model with LGN throughout the entire simulation
time. However, there was no noise present in the retina
in the model without LGN. Therefore the better accuracy
does not necessarily imply that the model does a better job
in discriminating motion targets under noise present in the
retina. When there is noise present in the retina, the detection
accuracy in the visual cortex is expected to be lower hence
having high RMS errors. This can be observed from figures 9,
10 and 11.

On the other hand, the inhibitory nature of the Neuropile
cells in LGN model is expected to reduce the effect of the
retinal noise on the visual cortex. The noise present in the
retina causes the visual cortex to produce waves even without
any input [8] when connected directly without the LGN.
Any motion target discrimination was not possible under that
circumstance.

However, with LGN present in between Retina and the
visual cortex, it was able to introduce noise in the retina and
use the visual cortex for discriminating motion targets even
with a higher RMS error. It is expected that the RMS detection
error of the Retina-LGN-Cortex model could vary depending
on the inhibition level used in the LGN.

A. Future Work

At this point, we are comparing the two models in order
to investigate the function of the LGN in turtle’s visual
system. Therefore, this comparison study is expected to give
only a qualitative comparison. Some of the model parameters

including the connection strengths between retina, LGN and
cortex sub models, noise levels in each sub model has to be
fine tuned and the impact of each should be further studied in
order to make a quantitative comparison.
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