Geometry and Control of Human Eye Movements

Ashoka D. Polpitiya
adpol@wustl.edu
(Under the supervision of: Professors Bijoy K. Ghosh \& W. P. Dayawansa)
Center for BioCybernetics and Intelligent Systems
School of Engineering and Applied Science
Washington University in Saint Louis
http://www.cbcis.wustl.edu

Why eye movements ?

Why eye movements?

- To understand the way the brain plans, controls, and executes movements in general.
Of all movements, eye movements are the most appealing ones:

Why eye movements?

- To understand the way the brain plans, controls, and executes movements in general.
Of all movements, eye movements are the most appealing ones:
- only three pairs of muscles control the movement
- eye has a negligible inertia
- only three degrees of freedom

Why eye movements?

- To understand the way the brain plans, controls, and executes movements in general.
Of all movements, eye movements are the most appealing ones:
- only three pairs of muscles control the movement
- eye has a negligible inertia
- only three degrees of freedom
- As a clinical utility.

To aid diagnoses, clarify treatment possibilities, explanations to eye disorders (e.g. squint)

Why eye movements?

- To understand the way the brain plans, controls, and executes movements in general.
Of all movements, eye movements are the most appealing ones:
- only three pairs of muscles control the movement
- eye has a negligible inertia
- only three degrees of freedom
- As a clinical utility.

To aid diagnoses, clarify treatment possibilities, explanations to eye disorders (e.g. squint)

- In robotics

Motivation for us

- Study of eye movements has been a topic of interest for a long time since the early work of Donders, Listing and Helmholtz in 1800's.

Motivation for us

- Study of eye movements has been a topic of interest for a long time since the early work of Donders, Listing and Helmholtz in 1800's.
- D. A. Robinson (1964) proposed a simple mechanical model for planer eye movements.

Motivation for us

- Study of eye movements has been a topic of interest for a long time since the early work of Donders, Listing and Helmholtz in 1800's.
- D. A. Robinson (1964) proposed a simple mechanical model for planer eye movements.
- Though the planer case has been thoroughly looked at, three-dimensional case has been difficult.

Motivation for us

- Study of eye movements has been a topic of interest for a long time since the early work of Donders, Listing and Helmholtz in 1800's.
- D. A. Robinson (1964) proposed a simple mechanical model for planer eye movements.
- Though the planer case has been thoroughly looked at, three-dimensional case has been difficult.
- Confusing arguments about the "Listing's law" for eye movements as well as the control stratergy by brain areas.

Motivation for us

- Study of eye movements has been a topic of interest for a long time since the early work of Donders, Listing and Helmholtz in 1800's.
- D. A. Robinson (1964) proposed a simple mechanical model for planer eye movements.
- Though the planer case has been thoroughly looked at, three-dimensional case has been difficult.
- Confusing arguments about the "Listing's law" for eye movements as well as the control stratergy by brain areas.
- Lack of a dynamic model. (some static models exist, Ex: Orbit ${ }^{\circledR}$.)

Motivation for us

- Study of eye movements has been a topic of interest for a long time since the early work of Donders, Listing and Helmholtz in 1800's.
- D. A. Robinson (1964) proposed a simple mechanical model for planer eye movements.
- Though the planer case has been thoroughly looked at, three-dimensional case has been difficult.
- Confusing arguments about the "Listing's law" for eye movements as well as the control stratergy by brain areas.
- Lack of a dynamic model. (some static models exist, Ex: Orbit ${ }^{\circledR}$.)
- There has not been a rigorous treatment using modern control theory and geometric tools.

Motivation for us

- Study of eye movements has been a topic of interest for a long time

- There has not been a rigorous treatment using modern control theory and geometric tools.

Outline of the talk

Outline of the talk

- Anatomy of the eye

Outline of the talk

- Anatomy of the eye
- Planer eye movements

Outline of the talk

- Anatomy of the eye
- Planer eye movements
- Three-dimensional eye movements : Geometry

Outline of the talk

- Anatomy of the eye
- Planer eye movements
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system

Outline of the talk

- Anatomy of the eye
- Planer eye movements
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye

Outline of the talk

- Anatomy of the eye
- Planer eye movements
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Anatomy of the Eye

Six muscles acting as agonist/ antagonist pairs:

- superior/inferior rectus muscles
- lateral/medial rectus muscles
- superior/inferior oblique muscles

Muscle pulleys

Muscles pass through pulleys

Muscle pulleys

Muscle pulleys

Movements of the Eye

- Saccades: are the fastest eye movements (velocities: $30 \sim 700^{\circ} / \mathrm{s}$ and lasting for about 40 ms). Aim is to precisely redirect the gaze to the target to have a stabilized image on the retina (diameter of about a degree). Ex: reading, a sudden eccentric sound. Happens under open-loop control.

Movements of the Eye

- Saccades: are the fastest eye movements (velocities: $30 \sim 700^{\circ} / \mathrm{s}$ and lasting for about 40 ms). Aim is to precisely redirect the gaze to the target to have a stabilized image on the retina (diameter of about a degree). Ex: reading, a sudden eccentric sound. Happens under open-loop control.
- Smooth pursuits: are the following eye movements evoked by a slow movement of a fixated target. Velocities: up to $50^{\circ} / \mathrm{s}$. Retinal error velocity is the input.

Movements of the Eye

- Saccades: are the fastest eye movements (velocities: $30 \sim 700^{\circ} / s$ and lasting for about 40 ms). Aim is to precisely redirect the gaze to the target to have a stabilized image on the retina (diameter of about a degree). Ex: reading, a sudden eccentric sound. Happens under open-loop control.
- Smooth pursuits: are the following eye movements evoked by a slow movement of a fixated target. Velocities: up to $50^{\circ} / \mathrm{s}$. Retinal error velocity is the input.
- Vestibular Ocular Reflex (VOR): compensates for the movement of the head ensuring a clear image of the target on retina.

Movements of the Eye

- Saccades: are the fastest eye movements (velocities: $30 \sim 700^{\circ} / s$ and lasting for about 40 ms). Aim is to precisely redirect the gaze to the target to have a stabilized image on the retina (diameter of about a degree). Ex: reading, a sudden eccentric sound. Happens under open-loop control.
- Smooth pursuits: are the following eye movements evoked by a slow movement of a fixated target. Velocities: up to $50^{\circ} / \mathrm{s}$. Retinal error velocity is the input.
- Vestibular Ocular Reflex (VOR): compensates for the movement of the head ensuring a clear image of the target on retina.
- Vergence movements: are the ones where the target moves along the gaze axis toward or away from the eye. The eye, which has the target moves along the gaze axis, remains stationary.

Outline of the talk

- Anatomy of the eye $\sqrt{ }$
- Planer eye movements
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Planer Eye Movements

- To simplify experiments and analysis.
- Study of planer eye movements has led to a remarkable understanding of one-dimensional movements, from the muscle mechanics to the underlying neural control system.
- A detailed biomechanical model was proposed by Martin \& Schovanec (1997), (M-S model) and studied saccadic eye movements. Sugathadasa et al.(2000) further investigated smooth-pursuit tracking problem.

Planer Eye Movements

- To simplify experiments and analysis.
- Study of planer eye movements has led to a remarkable understanding of one-dimensional movements, from the muscle mechanics to the underlying neural control system.
- A detailed biomechanical model was proposed by Martin \& Schovanec (1997), (M-S model) and studied saccadic eye movements. Sugathadasa et al.(2000) further investigated smooth-pursuit tracking problem.
- Polpitiya \& Ghosh (2002) proposed "Learning Curves" for open-loop saccadic movement control using the M-S model.

M-S Model

M-S Model

M-S Model

M-S Model

$F_{p e}\left(l_{m}\right)= \begin{cases}\left(\frac{k_{m l}}{k_{m e}}\right)\left[\exp \left(k_{m e}\left(l_{m}-l_{m s}\right)\right)-1\right] & l_{m s} \leq l_{m}<l_{m c} \\ k_{p m}\left(l_{m}-l_{m c}\right)+F_{m c} & l_{m}>l_{m c} \\ 0 & \text { otherwise }\end{cases}$

M-S Model

M-S Model

M-S Model

The equation of motion for the eye globe can be written as:

$$
J_{g} \ddot{\theta}+B_{g} \dot{\theta}+K_{g} \theta=F_{t_{1}}-F_{t_{2}}
$$

where J_{G}, B_{G}, and K_{G} denote the globe inertia, globe viscosity, and globe elasticity. J_{g}, B_{g}, K_{g} are obtained as $J_{g}=\frac{J_{G}}{980 r(180 / \pi)}$ with r denoting the radius of the eye globe.

M-S Model

The equation of motion for the eye globe can be written as:

$$
J_{g} \ddot{\theta}+B_{g} \dot{\theta}+K_{g} \theta=F_{t_{1}}-F_{t_{2}}
$$

where J_{G}, B_{G}, and K_{G} denote the globe inertia, globe viscosity, and globe elasticity. J_{g}, B_{g}, K_{g} are obtained as $J_{g}=\frac{J_{G}}{980 r(180 / \pi)}$ with r denoting the radius of the eye globe.

Model can be written in the form $\dot{x}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}$ where u_{1} and u_{2} are the neural inputs, let the state vector be $x^{T}(t)=\left[\theta, \dot{\theta}, l_{m 1}, \dot{l}_{m 1}, l_{m 2}, \dot{l}_{m 2}, F_{t_{1}}, F_{t_{2}}, a_{1}, a_{2}\right]$.

M-S Model

The equation of motion for the eye globe can be written as:

$$
J_{g} \ddot{\theta}+B_{g} \dot{\theta}+K_{g} \theta=F_{t_{1}}-F_{t_{2}}
$$

where J_{G}, B_{G}, and K_{G} denote the globe inertia, globe viscosity, and globe elasticity. J_{g}, B_{g}, K_{g} are obtained as $J_{g}=\frac{J_{G}}{980 r(180 / \pi)}$ with r denoting the radius of the eye globe.

Model can be written in the form $\dot{x}=f(x)+g_{1}(x) u_{1}+g_{2}(x) u_{2}$ where u_{1} and u_{2} are the neural inputs, let the state vector be $x^{T}(t)=\left[\theta, \dot{\theta}, l_{m 1}, \dot{l}_{m 1}, l_{m 2}, \dot{l}_{m 2}, F_{t_{1}}, F_{t_{2}}, a_{1}, a_{2}\right]$.

$$
\begin{aligned}
& g_{1}(x)=\left(1 / \tau_{1}\right)[0,0,0,0,0,0,0,0,1,0] \\
& g_{2}(x)=\left(1 / \tau_{1}\right)[[, 0,0,0,0,0,0,0,0,1] .
\end{aligned}
$$

M-S Model: Simulations

Figure 1: Neuronal inputs and the resulting activation signals to the agonist and antagonist (10^{0} saccade)

M-S Model: Simulations

Figure 2: Simulation of 10° Saccade and the corresponding forces in the tendons

Learning Curves

Figure 3: "Learning Curves":Cubic Hermite interpolant splines developed from horizontal saccadic eye movements originating from the primary position. The bottom two figures demonstrate how the ' T ' value changes with the initial gaze position.

Learning Curves

T : depends on the initial gaze direction and the amplitude of the saccade
a, b : depend on the steady state gaze direction.
$\left(a_{1}, b_{1}, T_{1}\right)$ for saccades originating from any gaze direction can be obtained as

$$
\begin{aligned}
\left(a_{1}, b_{1}\right) & =\left(a_{0}, b_{0}\right) \\
T_{1} & =T_{0}\left[1+f_{1}\left(\theta_{i}\right) g_{1}(\Delta \theta)\right]
\end{aligned}
$$

θ_{i} and $\Delta \theta$ are the initial gaze position and saccade amplitude respectively and T_{0} corresponds to the T value for a equal amplitude saccade originating from the primary position. $f_{1}\left(\theta_{i}\right)$ and $g_{1}(\Delta \theta)$ are scaling factors.

es Full Activation Time, Movement Toward Zero Degrees

Figure 4: "Learning Curves": Cubic Hermite interpolant splines developed from horizontal saccadic eye movements originating from the primary position. The bottom two figures demonstrate how the ' T ' value changes with the initial gaze position.

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements: Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Geometry of Eye Movements

- $\mathrm{SO}(3)$, the space of 3×3 rotation matrices, is the obvious choice for the configuration space.

$$
\begin{aligned}
\mathrm{SO}(3) & =\left\{\boldsymbol{R}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid(\boldsymbol{R} x, \boldsymbol{R} y)_{\mathbb{R}^{3}}=(x, y)_{\mathbb{R}^{3}}, \operatorname{det} \boldsymbol{R}=1\right\} \\
& =\left\{\boldsymbol{R}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid \boldsymbol{R} \boldsymbol{R}^{T}=\mathrm{Id}, \operatorname{det} \boldsymbol{R}=1\right\}
\end{aligned}
$$

Geometry of Eye Movements

- $\mathrm{SO}(3)$, the space of 3×3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.

Geometry of Eye Movements

- $\mathrm{SO}(3)$, the space of 3×3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.
- This ambiguity can precisely be resolved according to the observations by

Dondors, Listing and Helmholtz in 1800's. Better known as Listing's Law:

Geometry of Eye Movements

- $\mathrm{SO}(3)$, the space of 3×3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.
- This ambiguity can precisely be resolved according to the observations by

Dondors, Listing and Helmholtz in 1800's. Better known as Listing's Law:
> all rotation matrices employed have their axes of rotations orthogonal to the standard (or frontal) gaze direction"

Geometry of Eye Movements

- $\mathrm{SO}(3)$, the space of 3×3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.
- This ambiguity can precisely be resolved according to the observations by Dondors, Listing and Helmholtz in 1800's. Better known as Listing's Law:

[^0]
Geometry of Eye Movements

- $\mathrm{SO}(3)$, the space of 3×3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.
- This ambiguity can precisely be resolved according to the observations by Dondors, Listing and Helmholtz in 1800's. Better known as Listing's Law:


```
". . . all rotation matrices employed have their axes of rotations orthogonal to the standard (or frontal) gaze direction"
```

Eye as a mechanical system with holonomic constraints. Configuration space becomes a two dimensional submanifold of SO(3).
\Rightarrow "Listing Space (List)"

Quaternions to represent rotations

- Space of quaternions are denoted by \mathbf{Q}.
- $a \in \mathbf{Q}$ can be written as $a_{0} \overrightarrow{\mathbf{1}}+a_{1} \overrightarrow{\mathbf{i}}+a_{2} \overrightarrow{\mathbf{j}}+a_{3} \overrightarrow{\mathbf{k}}$.
$-\operatorname{vec}(a)=a_{1} \overrightarrow{\mathbf{i}}+a_{2} \overrightarrow{\mathbf{j}}+a_{3} \overrightarrow{\mathbf{k}}$
$-\operatorname{scal}(a)=a_{0} \overrightarrow{\mathbf{1}}$
- The vector $a_{1} \overrightarrow{\mathbf{i}}+a_{2} \overrightarrow{\mathbf{j}}+a_{3} \overrightarrow{\mathbf{k}}$ will be identified with $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ without any explicit mention of it.
- Quaternion product: $p \cdot q=p_{0} q_{0}-\mathbf{p} \cdot \mathbf{q}+p_{0} \mathbf{q}+q_{0} \mathbf{p}+\mathbf{p} \times \mathbf{q}$.

Thus we have maps,

$$
\mathbf{v e c}: \mathbf{Q} \rightarrow \mathbb{R}^{3}, a \mapsto\left(a_{1}, a_{2}, a_{3}\right)
$$

and

$$
\text { scal : } \mathbf{Q} \rightarrow \mathbb{R}, a \mapsto a_{0} .
$$

Quaternions to represent rotations

Each $q \in S^{3}$ (space of unit quaternions) can be written as

$$
q=\cos (\alpha / 2) \overrightarrow{\mathbf{1}}+\sin (\alpha / 2) n_{1} \overrightarrow{\mathbf{i}}+\sin (\alpha / 2) n_{2} \overrightarrow{\mathbf{j}}+\sin (\alpha / 2) n_{3} \overrightarrow{\mathbf{k}}
$$

where, $\alpha \in[0, \pi]$ and $\left(n_{1}, n_{2}, n_{3}\right)$ is a unit vector in \mathbb{R}^{3}.

Define

$$
\operatorname{rot}: S^{3} \rightarrow \mathrm{SO}(3)
$$

as the standard map from S^{3} into $\mathrm{SO}(3)$ which maps
$\cos (\alpha / 2) \overrightarrow{\mathbf{1}}+\sin (\alpha / 2) n_{1} \overrightarrow{\mathbf{i}}+\sin (\alpha / 2) n_{2} \overrightarrow{\mathbf{j}}+\sin (\alpha / 2) n_{3} \overrightarrow{\mathbf{k}}$ to a rotation around the axis n by a counterclockwise angle α.

Quaternions to represent rotations

There are two explicit ways of describing this map. First,

$$
\operatorname{rot}(q)\left(v_{1}, v_{2}, v_{3}\right)=\operatorname{vec}\left(q \cdot\left(v_{1} \overrightarrow{\mathbf{i}}+v_{2} \overrightarrow{\mathbf{j}}+v_{3} \overrightarrow{\mathbf{k}}\right) \cdot q^{-1}\right)
$$

Quaternions to represent rotations

There are two explicit ways of describing this map. First,

$$
\operatorname{rot}(q)\left(v_{1}, v_{2}, v_{3}\right)=\operatorname{vec}\left(q \cdot\left(v_{1} \overrightarrow{\mathbf{i}}+v_{2} \overrightarrow{\mathbf{j}}+v_{3} \overrightarrow{\mathbf{k}}\right) \cdot q^{-1}\right)
$$

Second,

$$
\operatorname{rot}(\mathrm{q})=\left[\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{1} q_{2}-q_{0} q_{3}\right) & 2\left(q_{1} q_{3}+q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}+q_{0} q_{3}\right) & q_{0}^{2}+q_{2}^{2}-q_{1}^{2}-q_{3}^{2} & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}-q_{0} q_{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) & q_{0}^{2}+q_{3}^{2}-q_{1}^{2}-q_{2}^{2}
\end{array}\right] \in \mathrm{SO}(3)
$$

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements $\sqrt{ }$
- Three-dimensional eye movements : Geometry
- Local coordinates on List.
- Riemannian metric on List.
- Levi-Civita connection on List.
- Geodesics on List.
- Curvature on List.
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Local coordinates on List

Let x_{3} axis is aligned with the normal gaze direction, then Listing's law amounts to a statement that all eye rotations have quaternion representations $q \in S^{3}$ with $q_{3}=0$.

List is diffeomorphic to \mathbb{P}^{2} (antipodal points identified).

Local coordinates on List

Let x_{3} axis is aligned with the normal gaze direction, then Listing's law amounts to a statement that all eye rotations have quaternion representations $q \in S^{3}$ with $q_{3}=0$.

List is diffeomorphic to \mathbb{P}^{2} (antipodal points identified).

Axis angle local coordinate system on List:

(θ, ϕ) describe the polar coordinate angle of the axis of rotation in the (x_{1}, x_{2}) plane and the angle of rotation around the axis respectively. Here we take $(\theta, \phi) \in[0, \pi] \times[0,2 \pi]$.
(Note: this fails when $\phi=0$ or $\phi=2 \pi$ since in both cases the the corresponding rotation is identity regardless of the value of θ)

Riemannian metric on List

Let's calculate the Riemannian metric on List induced from $\mathrm{SO}(3)$.

$$
\begin{aligned}
\mathrm{SO}(3) & =\left\{\boldsymbol{R}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid(\boldsymbol{R} x, \boldsymbol{R} y)_{\mathbb{R}^{3}}=(x, y)_{\mathbb{R}^{3}}, \operatorname{det} \boldsymbol{R}=1\right\} \\
& =\left\{\boldsymbol{R}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid \boldsymbol{R} \boldsymbol{R}^{T}=\operatorname{Id}, \operatorname{det} \boldsymbol{R}=1\right\}
\end{aligned}
$$

Riemannian metric on List

Let's calculate the Riemannian metric on List induced from $\mathrm{SO}(3)$.

$$
\begin{aligned}
\mathrm{SO}(3) & =\left\{\boldsymbol{R}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid(\boldsymbol{R} x, \boldsymbol{R} y)_{\mathbb{R}^{3}}=(x, y)_{\mathbb{R}^{3}}, \operatorname{det} \boldsymbol{R}=1\right\} \\
& =\left\{\boldsymbol{R}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid \boldsymbol{R} \boldsymbol{R}^{T}=\mathrm{Id}, \operatorname{det} \boldsymbol{R}=1\right\}
\end{aligned}
$$

The body angular velocity is defined as

$$
\boldsymbol{\Omega}(t)=\boldsymbol{R}^{T}(t) \dot{\boldsymbol{R}}(t)
$$

$\boldsymbol{\Omega}(t)$ is a skew-symmetric matrix.

Riemannian metric on List

Let's calculate the Riemannian metric on List induced from $\mathrm{SO}(3)$.

$$
\begin{aligned}
\mathrm{SO}(3) & =\left\{\boldsymbol{R}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid(\boldsymbol{R} x, \boldsymbol{R} y)_{\mathbb{R}^{3}}=(x, y)_{\mathbb{R}^{3}}, \operatorname{det} \boldsymbol{R}=1\right\} \\
& =\left\{\boldsymbol{R}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid \boldsymbol{R} \boldsymbol{R}^{T}=\mathrm{Id}, \operatorname{det} \boldsymbol{R}=1\right\}
\end{aligned}
$$

The body angular velocity is defined as

$$
\boldsymbol{\Omega}(t)=\boldsymbol{R}^{T}(t) \dot{\boldsymbol{R}}(t)
$$

$\boldsymbol{\Omega}(t)$ is a skew-symmetric matrix.
Since

$$
\dot{\boldsymbol{R}}(t)=\boldsymbol{R}(t) \boldsymbol{\Omega}(t), \quad \boldsymbol{\Omega}^{T}(t)=-\boldsymbol{\Omega}(t),
$$

the tangent space

$$
\mathrm{T}_{\boldsymbol{R}} \mathrm{SO}(3)=\left\{\boldsymbol{R} \boldsymbol{\Omega} \mid \mathbf{\Omega}^{T}=-\boldsymbol{\Omega}\right\}, \quad \boldsymbol{R} \in \mathrm{SO}(3) .
$$

Then the tangent space to $\mathrm{SO}(3)$ at the identity:

$$
\mathrm{T}_{\mathrm{Id}} \mathrm{SO}(3)=\left\{\boldsymbol{\Omega}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid \boldsymbol{\Omega}^{T}=-\boldsymbol{\Omega}\right\}=s o(3)
$$

Note that the space so(3) is the Lie algebra of the Lie group $\mathrm{SO}(3)$.

Riemannian metric on List, (cont'd.)

Assuming that the eye as a perfect sphere, and its moment of inertia as $I_{3 \times 3}$, the left invariant Riemannian metric on SO(3) given by,

$$
\left\langle\Omega\left(e_{i}\right), \mathbf{\Omega}\left(e_{j}\right)\right\rangle_{I}=\delta_{i, j},
$$

where,

$$
\boldsymbol{\Omega}\left(e_{k}\right)=\left[\begin{array}{ccc}
0 & \delta_{3, k} & -\delta_{2, k} \\
-\delta_{3, k} & 0 & \delta_{1, k} \\
\delta_{2, k} & -\delta_{1, k} & 0
\end{array}\right],
$$

and $\left\{\delta_{l, m}\right\}$ denotes the Kronecker delta function.

Riemannian metric on List, (cont'd.)

Now $\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}$ is an orthonormal basis of $\mathrm{T}_{\overrightarrow{\mathbf{1}}} S^{3}$, and recall that rot: $S^{3} \rightarrow \mathrm{SO}(3)$, then

$$
\operatorname{rot}\left(\left[\begin{array}{c}
\cos (t / 2) \\
\sin (t / 2) \\
0 \\
0
\end{array}\right]\right)=\mathrm{e}^{\mathrm{t} \Omega\left(\mathrm{e}_{1}\right)}, \quad \operatorname{rot}\left(\left[\begin{array}{c}
\cos (t / 2) \\
0 \\
\sin (t / 2) \\
0
\end{array}\right]\right)=\mathrm{e}^{\mathrm{t} \Omega\left(\mathrm{e}_{2}\right)}, \quad \operatorname{rot}\left(\left[\begin{array}{c}
\cos (t / 2) \\
0 \\
0 \\
\sin (t / 2)
\end{array}\right]\right)=\mathrm{e}^{\mathrm{t} \Omega\left(\mathrm{e}_{3}\right)} .
$$

Riemannian metric on List, (cont'd.)

Now $\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}$ is an orthonormal basis of $\mathrm{T}_{\overrightarrow{\mathbf{1}}} S^{3}$, and recall that rot : $S^{3} \rightarrow \mathrm{SO}(3)$, then

$$
\operatorname{rot}\left(\left[\begin{array}{c}
\cos (t / 2) \\
\sin (t / 2) \\
0 \\
0
\end{array}\right]\right)=\mathrm{e}^{\mathrm{t} \Omega\left(\mathrm{e}_{1}\right)}, \quad \operatorname{rot}\left(\left[\begin{array}{c}
\cos (t / 2) \\
0 \\
\sin (t / 2) \\
0
\end{array}\right]\right)=\mathrm{e}^{\mathrm{t} \Omega\left(\mathrm{e}_{2}\right)}, \quad \operatorname{rot}\left(\left[\begin{array}{c}
\cos (t / 2) \\
0 \\
0 \\
\sin (t / 2)
\end{array}\right]\right)=\mathrm{e}^{\mathrm{t} \Omega\left(\mathrm{e}_{3}\right)} .
$$

Notice that,

$$
\left.\frac{d}{d t}\right|_{t=0}\left[\begin{array}{c}
\cos (t / 2) \\
\sin (t / 2) \\
0 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\frac{\overrightarrow{\mathbf{i}}}{2},\left.\quad \frac{d}{d t}\right|_{t=0} e^{t \boldsymbol{\Omega}\left(e_{1}\right)}=\boldsymbol{\Omega}\left(e_{1}\right) .
$$

Riemannian metric on List, (cont'd.)

Now $\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}$ is an orthonormal basis of $\mathrm{T}_{\overrightarrow{\mathbf{1}}} S^{3}$, and recall that rot: $S^{3} \rightarrow \mathrm{SO}(3)$, then

Therefore,

$$
\operatorname{rot}_{* 1}(\overrightarrow{\mathbf{i}} / 2)=\Omega\left(\mathrm{e}_{1}\right), \quad \operatorname{rot}_{* \overrightarrow{\mathbf{1}}}(\overrightarrow{\mathbf{j}} / 2)=\Omega\left(\mathrm{e}_{2}\right), \quad \operatorname{rot}_{* \overrightarrow{\mathbf{1}}}(\overrightarrow{\mathbf{k}} / 2)=\Omega\left(\mathrm{e}_{3}\right)
$$

Hence $\left\{\operatorname{rot}_{*} \overrightarrow{\mathbf{1}} \mathbf{\mathbf { i }} / 2, \operatorname{rot}_{*} \overrightarrow{\mathbf{1}} \overrightarrow{\mathbf{j}} / 2, \operatorname{rot}_{* \mathbf{1}} \overrightarrow{\mathbf{k}} / 2\right\}$ is an orthonormal frame in $\mathrm{T}_{\mathrm{Id}}(\mathrm{SO}(3))$.

Riemannian metric on List, (cont'd.)

$$
\begin{array}{ccc}
S^{3} & \xrightarrow{\text { rot }} & \mathrm{SO}(3) \\
\downarrow & & \downarrow \\
\mathrm{T}_{q} S^{3} \xrightarrow{\operatorname{rot}_{*}} & \mathrm{~T}_{\operatorname{rot}(\mathrm{q})} \mathrm{SO}(3)
\end{array}
$$

Thus, $\left\{\operatorname{rot}_{* q} \overrightarrow{\mathbf{i}} / 2, \operatorname{rot}_{* q} \overrightarrow{\mathbf{j}} / 2, \operatorname{rot}_{* q} \overrightarrow{\mathbf{k}} / 2\right\}$ is an orthonormal basis of $\mathrm{T}_{\operatorname{rot}(\mathrm{q})} \mathrm{SO}(3)$ for all $q \in S^{3}$, and $\{q \cdot \overrightarrow{\mathbf{i}} / 2, q \cdot \overrightarrow{\mathbf{j}} / 2, q \cdot \overrightarrow{\mathbf{k}} / 2\}$ is an orthonormal basis of $\mathrm{T}_{q} S^{3}$.

Riemannian metric on List, (cont'd.)

Thus, $\left\{\operatorname{rot}_{* q} \overrightarrow{\mathbf{i}} / 2, \operatorname{rot}_{* q} \overrightarrow{\mathbf{j}} / 2, \operatorname{rot}_{* q} \overrightarrow{\mathbf{k}} / 2\right\}$ is an orthonormal basis of $\mathrm{T}_{\operatorname{rot}(\mathrm{q})} \mathrm{SO}(3)$ for all $q \in S^{3}$, and $\{q \cdot \overrightarrow{\mathbf{i}} / 2, q \cdot \overrightarrow{\mathbf{j}} / 2, q \cdot \overrightarrow{\mathbf{k}} / 2\}$ is an orthonormal basis of $\mathrm{T}_{q} S^{3}$.

The Riemannian metric on List has the form

$$
g=d s^{2}=\sum_{i j=1}^{n} g_{i j} d x_{i} d x_{j}
$$

where

$$
g_{i j}=\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle, \quad\left(x_{1}, x_{2}\right)=(\theta, \phi)
$$

Riemannian metric on List, (cont'd.)

Let $\rho:[0, \pi] \times[0,2 \pi] \rightarrow S^{3}$,

$$
\rho(\theta, \phi)=\left[\begin{array}{c}
\cos (\phi / 2) \\
\cos (\theta) \sin (\phi / 2) \\
\sin (\theta) \sin (\phi / 2) \\
0
\end{array}\right] .
$$

\[

\]

Riemannian metric on List, (cont'd.)

Let $\rho:[0, \pi] \times[0,2 \pi] \rightarrow S^{3}$,

$$
\rho(\theta, \phi)=\left[\begin{array}{c}
\cos (\phi / 2) \\
\cos (\theta) \sin (\phi / 2) \\
\sin (\theta) \sin (\phi / 2) \\
0
\end{array}\right] . \quad \begin{aligned}
& \text { List }
\end{aligned} \begin{gathered}
\rho \\
S^{3} \\
\\
\\
\mathrm{~T}_{(\theta, \phi)} \text { List } \xrightarrow{\rho_{*}} \\
\mathrm{~T}_{\rho(\theta, \phi)} S^{3}
\end{gathered}
$$

Then the Jacobian

$$
\mathcal{J}(\rho)(\theta, \phi)=\left(\rho_{*(\theta, \phi)}\left(\frac{\partial}{\partial \theta}\right) \quad \rho_{*(\theta, \phi)}\left(\frac{\partial}{\partial \phi}\right)\right)=\left(\begin{array}{cc}
0 & -\frac{1}{2} \sin (\phi / 2) \\
-\sin (\theta) \sin (\phi / 2) & \frac{1}{2} \cos (\theta) \cos (\phi / 2) \\
\cos (\theta) \sin (\phi / 2) & \frac{1}{2} \sin (\theta) \cos (\phi / 2) \\
0 & 0
\end{array}\right)
$$

Riemannian metric on List, (cont'd.)

Let $\rho:[0, \pi] \times[0,2 \pi] \rightarrow S^{3}$,

$$
\rho(\theta, \phi)=\left[\begin{array}{c}
\cos (\phi / 2) \\
\cos (\theta) \sin (\phi / 2) \\
\sin (\theta) \sin (\phi / 2) \\
0
\end{array}\right] . \quad \begin{aligned}
& \text { List } \xrightarrow{\rho} \\
& S^{3} \\
& \\
& \mathrm{~T}_{(\theta, \phi)} \text { List } \xrightarrow{\rho_{*}} \\
& \mathrm{~T}_{\rho(\theta, \phi)} S^{3}
\end{aligned}
$$

Then the Jacobian

$$
\mathcal{J}(\rho)(\theta, \phi)=\left(\rho_{*(\theta, \phi)}\left(\frac{\partial}{\partial \theta}\right) \quad \rho_{*(\theta, \phi)}\left(\frac{\partial}{\partial \phi}\right)\right)=\left(\begin{array}{cc}
0 & -\frac{1}{2} \sin (\phi / 2) \\
-\sin (\theta) \sin (\phi / 2) & \frac{1}{2} \cos (\theta) \cos (\phi / 2) \\
\cos (\theta) \sin (\phi / 2) & \frac{1}{2} \sin (\theta) \cos (\phi / 2) \\
0 & 0
\end{array}\right)
$$

Also notice that

$$
\rho(\theta, \phi) \cdot \overrightarrow{\mathbf{i}}=\left[\begin{array}{c}
-\cos (\theta) \sin (\phi / 2) \\
\cos (\phi / 2) \\
0 \\
-\sin (\theta) \sin (p h i / 2)
\end{array}\right], \quad \rho(\theta, \phi) \cdot \overrightarrow{\mathbf{j}}=\left[\begin{array}{c}
-\sin (\theta) \sin (\phi / 2) \\
0 \\
\cos (\phi / 2) \\
\cos (\theta) \sin (\phi / 2)
\end{array}\right], \quad \rho(\theta, \phi) \cdot \overrightarrow{\mathbf{k}}=\left[\begin{array}{c}
0 \\
\sin (\theta) \sin (\phi / 2) \\
-\cos (\theta) \sin (\phi / 2) \\
\cos (\phi / 2)
\end{array}\right]
$$

Riemannian metric on List, (cont'd.)

For $\theta=0$, it is easily observed that,

$$
\begin{aligned}
& \rho_{*(0, \phi)}\left(\frac{\partial}{\partial \theta}\right)=\sin (\phi / 2) \cos (\phi / 2) \rho(0, \phi) \cdot \overrightarrow{\mathbf{j}}-\sin ^{2}(\phi / 2) \rho(0, \phi) \cdot \overrightarrow{\mathbf{k}} \\
& \rho_{*(0, \phi)}\left(\frac{\partial}{\partial \phi}\right)=\frac{1}{2} \rho(0, \phi) \cdot \overrightarrow{\mathbf{i}}
\end{aligned}
$$

Riemannian metric on List, (cont'd.)

For $\theta=0$, it is easily observed that,

$$
\begin{aligned}
& \rho_{*(0, \phi)}\left(\frac{\partial}{\partial \theta}\right)=\sin (\phi / 2) \cos (\phi / 2) \rho(0, \phi) \cdot \overrightarrow{\mathbf{j}}-\sin ^{2}(\phi / 2) \rho(0, \phi) \cdot \overrightarrow{\mathbf{k}} \\
& \rho_{*(0, \phi)}\left(\frac{\partial}{\partial \phi}\right)=\frac{1}{2} \rho(0, \phi) \overrightarrow{\mathbf{i}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
g_{11} & =\left\langle\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right\rangle=4 \sin ^{2}(\phi / 2) \\
g_{12} & =\left\langle\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}\right\rangle=0 \\
g_{22} & =\left\langle\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \phi}\right\rangle=1 .
\end{aligned}
$$

Riemannian metric on List, (cont'd.)

For $\theta=0$, it is easily observed that,

$$
\begin{aligned}
& \rho_{*(0, \phi)}\left(\frac{\partial}{\partial \theta}\right)=\sin (\phi / 2) \cos (\phi / 2) \rho(0, \phi) \cdot \overrightarrow{\mathbf{j}}-\sin ^{2}(\phi / 2) \rho(0, \phi) \cdot \overrightarrow{\mathbf{k}}, \\
& \rho_{*(0, \phi)}\left(\frac{\partial}{\partial \phi}\right)=\frac{1}{2} \rho(0, \phi) \cdot \overrightarrow{\mathbf{i}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& g_{11}=\left\langle\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right\rangle=4 \sin ^{2}(\phi / 2), \\
& g_{12}=\left\langle\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}\right\rangle=0, \\
& g_{22}=\left\langle\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \phi}\right\rangle=1 .
\end{aligned}
$$

Thus, the Riemannian metric on List

$$
g=4 \sin ^{2}(\phi / 2) d \theta^{2}+d \phi^{2}
$$

Levi-Civita connection on List

Riemannian connection, $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ of a Riemannian manifold M, is uniquely defined by the Koszul formula

$$
\begin{aligned}
2\left\langle\nabla_{X} Y, Z\right\rangle= & \mathscr{L}_{X}\langle Y, Z\rangle+\mathscr{L}_{Y}\langle X, Z\rangle-\mathscr{L}_{Z}\langle X, Y\rangle \\
& -\langle X,[Y, Z]\rangle-\langle Y,[X, Z]\rangle+\langle Z,[X, Y]\rangle
\end{aligned}
$$

A Riemannian connection ∇ has the following properties:

$$
\begin{aligned}
\nabla_{f X+g Y} & =f \nabla_{X}+g \nabla_{Y} \\
\nabla_{X}(a Y+b Z) & =a \nabla_{X} Y+b \nabla_{X} Z \\
\nabla_{X} f Y & =\mathscr{L}_{X} f Y+f \nabla_{X} Y
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{X} Y-\nabla_{Y} X & =[X, Y] \\
\mathscr{L}_{X}\langle Y, Z\rangle & =\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle
\end{aligned}
$$

for $X, Y, Z \in \mathfrak{X}(\mathrm{M}), f, g \in \mathfrak{F}(\mathrm{M})$ and $a, b \in \mathbb{R}$.

Levi-Civita connection on List

Riemannian connection, $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ of a Riemannian manifold M, is uniquely defined by the Koszul formula

$$
\begin{aligned}
2\left\langle\nabla_{X} Y, Z\right\rangle= & \mathscr{L}_{X}\langle Y, Z\rangle+\mathscr{L}_{Y}\langle X, Z\rangle-\mathscr{L}_{Z}\langle X, Y\rangle \\
& -\langle X,[Y, Z]\rangle-\langle Y,[X, Z]\rangle+\langle Z,[X, Y]\rangle
\end{aligned}
$$

A Riemannian connection ∇ has the following properties:

$$
\begin{aligned}
\nabla_{f X+g Y} & =f \nabla_{X}+g \nabla_{Y} \\
\nabla_{X}(a Y+b Z) & =a \nabla_{X} Y+b \nabla_{X} Z, \\
\nabla_{X} f Y & =\mathscr{L}_{X} f Y+f \nabla_{X} Y,
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{X} Y-\nabla_{Y} X & =[X, Y], \\
\mathscr{L}_{X}\langle Y, Z\rangle & =\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle
\end{aligned}
$$

for $X, Y, Z \in \mathfrak{X}(\mathrm{M}), f, g \in \mathscr{F}(\mathrm{M})$ and $a, b \in \mathbb{R}$.
Using the subscripted coordinates $\left(y_{1}, y_{2}\right)$ to denote (θ, ϕ) and Christoffel symbols $\Gamma_{i j}^{k}$

$$
\nabla_{\partial y_{i} / \partial y_{j}}=\Gamma_{i j}^{k} \partial / \partial y_{k},
$$

Christoffel symbols are given by

$$
\Gamma_{i j}^{k}=\sum_{h=1}^{2} \frac{g^{i h}}{2}\left\{\frac{\partial g_{h j}}{\partial y_{k}}+\frac{\partial g_{h k}}{\partial y_{j}}-\frac{\partial g_{j k}}{\partial y_{h}}\right\} \quad i, j, k=1,2
$$

Levi-Civita connection on List (cont'd.)

Now

$$
\left(g_{i j}\right)=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{cc}
4 \sin ^{2}(\phi / 2) & 0 \\
0 & 1
\end{array}\right), \quad\left(\text { lower } g-i j^{\prime} s\right)
$$

and,

$$
\left.\left(g^{i j}\right)=\left(\begin{array}{ll}
g^{11} & g^{12} \\
g^{21} & g^{22}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{4 \sin ^{2}(\phi / 2)} & 0 \\
0 & 1
\end{array}\right) . \quad \text { (upper } g-i j^{\prime} \mathrm{s}\right)
$$

Levi-Civita connection on List (cont'd.)

Now

$$
\left.\left(g_{i j}\right)=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{cc}
4 \sin ^{2}(\phi / 2) & 0 \\
0 & 1
\end{array}\right), \quad \text { (lower } g-i j^{\prime} s\right)
$$

and,

$$
\left(g^{i j}\right)=\left(\begin{array}{ll}
g^{11} & g^{12} \\
g^{21} & g^{22}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{4 \sin ^{2}(\phi / 2)} & 0 \\
0 & 1
\end{array}\right) . \quad\left(\text { upper } g-i j^{\prime} s\right)
$$

Thus, we obtain expressions for Christoffel symbols,

$$
\begin{array}{ll}
\Gamma_{11}^{1}=0, & \Gamma_{11}^{2}=-\sin (\phi) \\
\Gamma_{12}^{1}=\frac{1}{2 \tan (\phi / 2)}, & \Gamma_{21}^{1}=\frac{1}{2 \tan (\phi / 2)} \\
\Gamma_{12}^{2}=0, & \Gamma_{21}^{2}=0 \\
\Gamma_{22}^{1}=0, & \Gamma_{22}^{2}=0
\end{array}
$$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\nabla_{\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)}\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now use the property: $\nabla_{f X+g Y}=f \nabla_{X}+g \nabla_{Y}$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\left(\dot{\theta} \nabla_{\frac{\partial}{\partial \theta}}+\dot{\phi} \nabla_{\frac{\partial}{\partial \phi}}\right)\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now use the property: $\nabla_{X}(a Y+b Z)=a \nabla_{X} Y+b \nabla_{X} Z$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\dot{\theta} \nabla_{\frac{\partial}{\partial \theta}}\left(\dot{\theta} \frac{\partial}{\partial \theta}\right)+\dot{\theta} \nabla_{\frac{\partial}{\partial \theta}}\left(\dot{\phi} \frac{\partial}{\partial \phi}\right)+\dot{\phi} \nabla_{\frac{\partial}{\partial \phi}}\left(\dot{\theta} \frac{\partial}{\partial \theta}\right)+\dot{\phi} \nabla_{\frac{\partial}{\partial \phi}}\left(\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now use the property: $\nabla_{X} f Y=\mathscr{L}_{X} f Y+f \nabla_{X} Y$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\ddot{\theta} \frac{\partial}{\partial \theta}+\ddot{\phi} \frac{\partial}{\partial \phi}+\dot{\theta}^{2} \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}+\dot{\theta} \dot{\phi}\left(\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}+\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}\right)+\dot{\phi}^{2} \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=0
$$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\begin{aligned}
& \qquad \nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\ddot{\theta} \frac{\partial}{\partial \theta}+\ddot{\phi} \frac{\partial}{\partial \phi}+\dot{\theta}^{2} \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}+\dot{\theta} \dot{\phi}\left(\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}+\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}\right)+\dot{\phi}^{2} \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=0 \\
& \qquad \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}=\sum_{k=1}^{2} \Gamma_{11}^{k} \frac{\partial}{\partial y_{k}}=-\sin (\phi) \frac{\partial}{\partial \phi} \\
& \text { where }\left(y_{1}, y_{2}\right)=(\theta, \phi)
\end{aligned}
$$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\begin{aligned}
& \qquad \nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\ddot{\theta} \frac{\partial}{\partial \theta}+\ddot{\phi} \frac{\partial}{\partial \phi}+\dot{\theta}^{2} \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}+\dot{\theta} \dot{\phi}\left(\begin{array}{|}
\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}
\end{array}+\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}\right)+\dot{\phi}^{2} \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=0 \\
& \qquad \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}=\sum_{k=1}^{2} \Gamma_{12}^{k} \frac{\partial}{\partial y_{k}}=\frac{1}{2 \tan (\phi / 2)} \frac{\partial}{\partial \theta} \\
& \text { where }\left(y_{1}, y_{2}\right)=(\theta, \phi)
\end{aligned}
$$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\begin{aligned}
& \left.\qquad \nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\ddot{\theta} \frac{\partial}{\partial \theta}+\ddot{\phi} \frac{\partial}{\partial \phi}+\dot{\theta}^{2} \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}+\dot{\theta} \dot{\phi}\left(\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}+\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}\right)\right)+\dot{\phi}^{2} \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=0 \\
& \qquad \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}=\sum_{k=1}^{2} \Gamma_{21}^{k} \frac{\partial}{\partial y_{k}}=\frac{1}{2 \tan (\phi / 2)} \frac{\partial}{\partial \theta} \\
& \text { where }\left(y_{1}, y_{2}\right)=(\theta, \phi)
\end{aligned}
$$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\begin{gathered}
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\ddot{\theta} \frac{\partial}{\partial \theta}+\ddot{\phi} \frac{\partial}{\partial \phi}+\dot{\theta}^{2} \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}+\dot{\theta} \dot{\phi}\left(\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}+\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}\right)+\dot{\phi}^{2} \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=0 \\
\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=\sum_{k=1}^{2} \Gamma_{22}^{k} \frac{\partial}{\partial y_{k}}=0
\end{gathered}
$$

where $\left(y_{1}, y_{2}\right)=(\theta, \phi)$

Geodesics on List

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t)=(\theta(t), \phi(t))$ be a geodesic on List. Then

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=0,
$$

where

$$
\dot{\sigma}(t)=\left(\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right)
$$

Now,

$$
\nabla_{\dot{\sigma}(t)} \dot{\sigma}(t)=\ddot{\theta} \frac{\partial}{\partial \theta}+\ddot{\phi} \frac{\partial}{\partial \phi}+\dot{\theta}^{2} \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}+\dot{\theta} \dot{\phi}\left(\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi}+\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta}\right)+\dot{\phi}^{2} \nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi}=0
$$

Therefore, the equations of geodesics

$$
\begin{array}{r}
\ddot{\theta}+\frac{1}{\tan (\phi / 2)} \dot{\theta} \dot{\phi}=0, \\
\ddot{\phi}-\sin \phi \dot{\theta}^{2}=0 .
\end{array}
$$

Geodesics on List

Geodesics emanating from $(\pi / 4, \pi / 4)$

Curvature on List

The curvature \mathcal{R} of a Riemannian manifold (M, g) is a correspondence that associates to every pair $X, Y \in \mathfrak{X}(\mathrm{M})$ a mapping $\mathcal{R}(X, Y): \mathfrak{X}(\mathrm{M}) \rightarrow \mathfrak{X}(\mathrm{M})$ given by

$$
\mathcal{R}(X, Y) Z=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z, \quad Z \in \mathfrak{X}(M),
$$

where ∇ is the Levi-Civita connection of M.

Curvature on List

The curvature \mathcal{R} of a Riemannian manifold (M, g) is a correspondence that associates to every pair $X, Y \in \mathfrak{X}(\mathrm{M})$ a mapping $\mathcal{R}(X, Y): \mathfrak{X}(\mathrm{M}) \rightarrow \mathfrak{X}(\mathrm{M})$ given by

$$
\mathcal{R}(X, Y) Z=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z, \quad Z \in \mathfrak{X}(M),
$$

where ∇ is the Levi-Civita connection of M.
From the Christoffel symbols for the basis $\left\{\partial_{\theta}, \partial_{\phi}\right\}, \mathcal{R}$,

$$
\mathcal{R}\left(\partial_{\theta}, \partial_{\phi}\right) \partial_{\theta}=\nabla_{\partial_{\theta}} \nabla_{\partial_{\phi}} \partial_{\theta}-\nabla_{\partial_{\phi}} \nabla_{\partial_{\theta}} \partial_{\theta}, \quad \text { since }\left[\partial_{\theta}, \partial_{\phi}\right]=0,\left(\text { Note: } \partial_{\theta}=\frac{\partial}{\partial \theta}\right) .
$$

Curvature on List

The curvature \mathcal{R} of a Riemannian manifold $(\mathrm{M}, g$) is a correspondence that associates to every pair $X, Y \in \mathfrak{X}(\mathrm{M})$ a mapping $\mathcal{R}(X, Y): \mathfrak{X}(\mathrm{M}) \rightarrow \mathfrak{X}(\mathrm{M})$ given by

$$
\mathcal{R}(X, Y) Z=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z, \quad Z \in \mathfrak{X}(M),
$$

where ∇ is the Levi-Civita connection of M.
From the Christoffel symbols for the basis $\left\{\partial_{\theta}, \partial_{\phi}\right\}, \mathcal{R}$,

$$
\mathcal{R}\left(\partial_{\theta}, \partial_{\phi}\right) \partial_{\theta}=\nabla_{\partial_{\theta}} \nabla_{\partial_{\phi}} \partial_{\theta}-\nabla_{\partial_{\phi}} \nabla_{\partial_{\theta}} \partial_{\theta}, \quad \text { since }\left[\partial_{\theta}, \partial_{\phi}\right]=0,\left(\text { Note: } \partial_{\theta}=\frac{\partial}{\partial \theta}\right) .
$$

This evaluates to,

$$
\begin{aligned}
\mathcal{R}\left(\partial_{\theta}, \partial_{\phi}\right) \partial_{\theta} & =-\cos (\phi / 2) \partial_{\theta} \\
\mathcal{R}\left(\partial_{\theta}, \partial_{\phi}\right) \partial_{\phi} & =\frac{1}{4} \partial_{\theta} .
\end{aligned}
$$

Curvature on List

The curvature \mathcal{R} of a Riemannian manifold $(\mathrm{M}, g$) is a correspondence that associates to every pair $X, Y \in \mathfrak{X}(\mathrm{M})$ a mapping $\mathcal{R}(X, Y): \mathfrak{X}(\mathrm{M}) \rightarrow \mathfrak{X}(\mathrm{M})$ given by

$$
\mathcal{R}(X, Y) Z=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z, \quad Z \in \mathfrak{X}(M),
$$

where ∇ is the Levi-Civita connection of M.
From the Christoffel symbols for the basis $\left\{\partial_{\theta}, \partial_{\phi}\right\}, \mathcal{R}$,

$$
\mathcal{R}\left(\partial_{\theta}, \partial_{\phi}\right) \partial_{\theta}=\nabla_{\partial_{\theta}} \nabla_{\partial_{\phi}} \partial_{\theta}-\nabla_{\partial_{\phi}} \nabla_{\partial_{\theta}} \partial_{\theta}, \quad \text { since }\left[\partial_{\theta}, \partial_{\phi}\right]=0,\left(\text { Note: } \partial_{\theta}=\frac{\partial}{\partial \theta}\right) .
$$

This evaluates to,

$$
\begin{aligned}
\mathcal{R}\left(\partial_{\theta}, \partial_{\phi}\right) \partial_{\theta} & =-\cos (\phi / 2) \partial_{\theta} \\
\mathcal{R}\left(\partial_{\theta}, \partial_{\phi}\right) \partial_{\phi} & =\frac{1}{4} \partial_{\theta} .
\end{aligned}
$$

In particular, the Gauss curvature is given by,

$$
\begin{aligned}
K(\theta, \phi) & =\left\langle\mathcal{R}\left(\partial_{\theta}, \partial_{\phi}\right) \partial_{\phi}, \partial_{\theta}\right\rangle /\left\langle\partial_{\theta}, \partial_{\theta}\right\rangle \\
& =1 / 4
\end{aligned}
$$

Outline of the talk

- Anatomy of the eye $\sqrt{ }$
- Planer eye movements \checkmark
- Three-dimensional eye movements: Geometry $\sqrt{ }$
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Eye as a simple mechanical control system

A "simple mechanical control system" (see Smale, 1970) consists the following:

- a configuration manifold Q ,
- Riemannian metric g on \mathbf{Q} that defines the kinetic energy function on the tangent bundle of Q,
- external forces as functions on the tangent bundle,
- any constraints on the system,
- control forces on the system as covector fields on the configuration manifold.

Eye as a simple mechanical control system

A "simple mechanical control system" (see Smale, 1970) consists the following:

- a configuration manifold Q,
- Riemannian metric g on Q that defines the kinetic energy function on the tangent bundle of Q,
- external forces as functions on the tangent bundle,
- any constraints on the system,
- control forces on the system as covector fields on the configuration manifold.

For the eye movement system, List is the configuration manifold.
$g=4 \sin ^{2}(\phi / 2) d \theta^{2}+d \phi^{2}$. is the Riemannian metric on List.

Equations of motion

Let the Lagrangian of the system be

$$
\begin{aligned}
L(\theta, \phi, \dot{\theta}, \dot{\phi}) & =\text { Kinetic Energy - Potential Energy } \\
& =\frac{1}{2}\left\|\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right\|^{2}-V(\theta, \phi) \\
& =\frac{1}{2}\left\langle\dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi}\right\rangle-V(\theta, \phi)
\end{aligned}
$$

Equations of motion

Let the Lagrangian of the system be

$$
\begin{aligned}
L(\theta, \phi, \dot{\theta}, \dot{\phi}) & =\text { Kinetic Energy }- \text { Potential Energy } \\
& =\frac{1}{2}\left\|\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right\|^{2}-V(\theta, \phi) \\
& =\frac{1}{2}\left\langle\dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi}\right\rangle-V(\theta, \phi)
\end{aligned}
$$

Recall that

$$
\begin{aligned}
g_{11} & =<\partial_{\theta}, \partial_{\theta}>=4 \sin ^{2}(\phi / 2) \\
g_{12} & =<\partial_{\theta}, \partial_{\phi}>=0, \\
g_{22} & =<\partial_{\phi}, \partial_{\phi}>=1 .
\end{aligned}
$$

Equations of motion

Let the Lagrangian of the system be

$$
\begin{aligned}
L(\theta, \phi, \dot{\theta}, \dot{\phi}) & =\text { Kinetic Energy }- \text { Potential Energy } \\
& =\frac{1}{2}\left\|\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right\|^{2}-V(\theta, \phi) \\
& =\frac{1}{2}\left\langle\dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi}\right\rangle-V(\theta, \phi) \\
L(\theta, \phi, \dot{\theta}, \dot{\phi}) & =2 \dot{\theta}^{2} \sin ^{2}(\phi / 2)+\frac{1}{2} \dot{\phi}^{2}-V(\theta, \phi)
\end{aligned}
$$

Equations of motion

Let the Lagrangian of the system be

$$
\begin{aligned}
L(\theta, \phi, \dot{\theta}, \dot{\phi}) & =\text { Kinetic Energy - Potential Energy } \\
& =\frac{1}{2}\left\|\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right\|^{2}-V(\theta, \phi) \\
& =\frac{1}{2}\left\langle\dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi}\right\rangle-V(\theta, \phi) \\
L(\theta, \phi, \dot{\theta}, \dot{\phi}) & =2 \dot{\theta}^{2} \sin ^{2}(\phi / 2)+\frac{1}{2} \dot{\phi}^{2}-V(\theta, \phi)
\end{aligned}
$$

Euler-Lagrange equations:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}}=F_{i}, \quad i=1, \ldots, n
$$

Equations of motion

Let the Lagrangian of the system be

$$
\begin{aligned}
L(\theta, \phi, \dot{\theta}, \dot{\phi}) & =\text { Kinetic Energy }- \text { Potential Energy } \\
& =\frac{1}{2}\left\|\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right\|^{2}-V(\theta, \phi) \\
& =\frac{1}{2}\left\langle\dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi}\right\rangle-V(\theta, \phi) \\
L(\theta, \phi, \dot{\theta}, \dot{\phi}) & =2 \dot{\theta}^{2} \sin ^{2}(\phi / 2)+\frac{1}{2} \dot{\phi}^{2}-V(\theta, \phi)
\end{aligned}
$$

Euler-Lagrange equations:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}}=F_{i}, \quad i=1, \ldots, n
$$

Therefore the equations of motion:

$$
\begin{aligned}
\ddot{\theta}+\dot{\theta} \dot{\phi} \cot (\phi / 2)+\frac{1}{4} \csc ^{2}(\phi / 2) \frac{\partial}{\partial \theta} V & =\frac{1}{4} \csc ^{2}(\phi / 2) \tau_{\theta} \\
\ddot{\phi}-\dot{\theta}^{2} \sin (\phi)+\frac{\partial}{\partial \phi} V & =\tau_{\phi}
\end{aligned}
$$

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements : Geometry \checkmark
- Eye as a simple mechanical control system \checkmark
- Optimal control of the eye
- Conclusions and future directions

Optimal control

Case I: Generalized torques, $\tau_{\theta}, \tau_{\phi}$
Let $V(\theta, \phi)=\sin ^{2}(\phi / 2)$.
Equations of motion:

$$
\begin{aligned}
\ddot{\theta}+\dot{\theta} \dot{\phi} \cot (\phi / 2) & =\frac{1}{4} \csc ^{2}(\phi / 2) \tau_{\theta} \\
\ddot{\phi}-\dot{\theta}^{2} \sin (\phi)+\frac{1}{2} \sin (\phi) & =\tau_{\phi} .
\end{aligned}
$$

Optimal control

Case I: Generalized torques, $\tau_{\theta}, \tau_{\phi}$
Let $V(\theta, \phi)=\sin ^{2}(\phi / 2)$.
Equations of motion:

$$
\begin{aligned}
\ddot{\theta}+\dot{\theta} \dot{\phi} \cot (\phi / 2) & =\frac{1}{4} \csc ^{2}(\phi / 2) \tau_{\theta} \\
\ddot{\phi}-\dot{\theta}^{2} \sin (\phi)+\frac{1}{2} \sin (\phi) & =\tau_{\phi} .
\end{aligned}
$$

Let $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]^{\prime}=[\theta, \dot{\theta}, \phi, \dot{\phi}]^{\prime}$, then

$$
\frac{d}{d t}\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
-z_{2} z_{4} \cot \left(z_{3} / 2\right) \\
z_{4} \\
z_{2}^{2} \sin \left(z_{3}\right)-\frac{1}{2} \sin \left(z_{3}\right)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{4} \csc ^{2}\left(z_{3} / 2\right) \\
0 \\
0
\end{array}\right] \tau_{\theta}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \tau_{\phi}
$$

Optimal control

We wish to control the state $(\theta, \dot{\theta}, \phi, \dot{\phi})$ from $\left(\theta_{0}, 0, \phi_{0}, 0\right)$ to $\left(\theta_{1}, 0, \phi_{1}, 0\right)$ in T unit of time, while minimizing the control energy,

$$
\int_{0}^{T}\left[\left(\tau_{\theta}(t)\right)^{2}+\left(\tau_{\phi}(t)\right)^{2}\right] d t
$$

Optimal control

We wish to control the state $(\theta, \dot{\theta}, \phi, \dot{\phi})$ from $\left(\theta_{0}, 0, \phi_{0}, 0\right)$ to $\left(\theta_{1}, 0, \phi_{1}, 0\right)$ in T unit of time, while minimizing the control energy,

$$
\int_{0}^{T}\left[\left(\tau_{\theta}(t)\right)^{2}+\left(\tau_{\phi}(t)\right)^{2}\right] d t
$$

Lagrangian:

$$
L=\frac{1}{2}\left(\left(\tau_{\theta}(t)\right)^{2}+\left(\tau_{\phi}(t)\right)^{2}\right)
$$

and denote the costate by λ. Construct the Hamiltonian

$$
\begin{aligned}
\mathcal{H}(z, \lambda)= & \lambda . \dot{z}-L(z) \\
= & \lambda_{1} z_{2}-\lambda_{2} z_{2} z_{4} \cot \left(z_{3} / 2\right)+\lambda_{3} z_{4}+\lambda_{4} z_{2}^{2} \sin \left(z_{3}\right)-\frac{1}{2} \lambda_{4} \sin \left(z_{3}\right) \\
& \frac{\lambda_{2}}{4 \sin ^{2}\left(z_{3} / 2\right)} \tau_{\theta}+c \lambda_{4} \tau_{\phi}+\frac{1}{2}\left(\left(\tau_{\theta}(t)\right)^{2}+\left(\tau_{\phi}(t)\right)^{2}\right)
\end{aligned}
$$

Optimal control

Hamilton's principle:

$$
\dot{q}^{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}, \quad \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q^{i}},
$$

where $p_{i}=\frac{\partial L}{\partial \dot{q}^{\prime}}, \quad i=1, \ldots, n$.

Optimal control

Hamilton's principle:

$$
\dot{q}^{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}, \quad \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q^{i}},
$$

where $p_{i}=\frac{\partial L}{\partial \dot{q}^{\prime}} \quad i=1, \ldots, n$.
Hamiltonian system:

$$
\frac{d}{d t}\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
-z_{2} z_{4} \cot \left(z_{3} / 2\right)+1 / 4 \sin ^{2}\left(z_{3} / 2\right) \tau_{\theta}^{*} \\
z_{4} \\
z_{2}^{2} \sin \left(z_{3}\right)-\frac{1}{2} \sin \left(z_{3}\right)+\tau_{\phi}^{*} \\
0 \\
-\lambda_{1}+\lambda_{2} z_{4} \cot \left(z_{3} / 2\right)-2 \lambda_{4} z_{2} \sin \left(z_{3}\right) \\
-\frac{1}{2} \lambda_{2} z_{2} z_{4} \csc \left(z_{3} / 2\right)-\lambda_{4} z_{2}^{2} \cos z_{3}+\frac{1}{2} \lambda_{4} \cos \left(z_{3}\right)+\frac{1}{2} \lambda_{2} \cot \left(z_{3}\right) \csc ^{2}\left(z_{3}\right) \tau_{\theta}^{*} \\
\lambda_{2} z_{2} \cot \left(z_{3} / 2\right)-\lambda_{3}
\end{array}\right]
$$

Optimal control

Hamilton's principle:

$$
\dot{q}^{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}, \quad \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q^{i}},
$$

where $p_{i}=\frac{\partial L}{\partial \dot{q}^{\prime}}, \quad i=1, \ldots, n$.
According to Pontryagin Maximum Principle (PMP), we can obtain:

$$
\begin{aligned}
\tau_{\theta} & =-\frac{\lambda_{2}}{4 \sin ^{2}\left(z_{3} / 2\right)} \\
\tau_{\phi} & =-\lambda_{4}
\end{aligned}
$$

Optimal control

Hamilton's principle:

$$
\dot{q}^{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}, \quad \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q^{i}},
$$

where $p_{i}=\frac{\partial L}{\partial \dot{q}^{i}}, \quad i=1, \ldots, n$.
According to Pontryagin Maximum Principle (PMP), we can obtain:

$$
\begin{aligned}
\tau_{\theta} & =-\frac{\lambda_{2}}{4 \sin ^{2}\left(z_{3} / 2\right)} \\
\tau_{\phi} & =-\lambda_{4}
\end{aligned}
$$

Thus the system becomes

$$
\left[\begin{array}{c}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3} \\
\dot{z}_{4} \\
\dot{\lambda}_{1} \\
\dot{\lambda}_{2} \\
\dot{\lambda}_{3} \\
\dot{\lambda}_{4}
\end{array}\right]=\left[\begin{array}{c}
z_{2} \\
-z_{2} z_{4} \cot \left(z_{3} / 2\right)-\frac{\lambda_{2}}{16} \csc { }^{4}\left(z_{3} / 2\right) \\
z_{4} \\
z_{2}^{2} \sin \left(z_{3}\right)-\frac{1}{2} \sin \left(z_{3}\right)-\lambda_{4} \\
0 \\
-\lambda_{1}+\lambda_{2} z_{4} \cot \left(z_{3} / 2\right)-2 \lambda_{4} z_{2} \sin \left(z_{3}\right) \\
\left(-\frac{1}{2} \lambda_{2} z_{2} z_{4} \csc \left(z_{3} / 2\right)-\lambda_{4} z_{2} \cos \left(z_{3}\right)+\right. \\
\left.\frac{1}{2} \lambda_{4} \cos \left(z_{3} / 2\right)-\frac{\lambda_{2}^{2}}{16} \csc { }^{4}\left(z_{3} / 2\right) \cot \left(z_{3} / 2\right)\right) \\
\lambda_{2} z_{2} \cot \left(z_{3} / 2\right)-\lambda_{3}
\end{array}\right] .
$$

Optimal control

大 \star 因

Optimal path from $(\pi / 3, \pi / 4)$ to $(\pi / 10, \pi / 10)$

$\dot{\theta}, \dot{\phi}$ and $\tau_{\theta}, \tau_{\phi}$

Optimal control

Case II: Simplified muscles
Each musculotendon consist of a linear spring with spring constant k_{i}, a damper with damping constant b_{i}, and an active force F_{i}.

Projecting the torques to List
$\theta \longrightarrow \theta+\delta \theta, \phi \longrightarrow \phi$.
Virtual work by the spring: $k_{i}\left(l_{i}-l_{i_{0}}\right) \delta l=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} d \theta$.

Optimal control

Case II: Simplified muscles
Each musculotendon consist of a linear spring with spring constant k_{i}, a damper with damping constant b_{i}, and an active force F_{i}.

Projecting the torques to List
$\theta \longrightarrow \theta+\delta \theta, \phi \longrightarrow \phi$.
Virtual work by the spring: $k_{i}\left(l_{i}-l_{i_{0}}\right) \delta l=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} d \theta$.

$$
\tau_{\theta}=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} .
$$

Optimal control

Case II: Simplified muscles
Each musculotendon consist of a linear spring with spring constant k_{i}, a damper with damping constant b_{i}, and an active force F_{i}.

Projecting the torques to List
$\theta \longrightarrow \theta+\delta \theta, \phi \longrightarrow \phi$.
Virtual work by the spring: $k_{i}\left(l_{i}-l_{i_{0}}\right) \delta l=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} d \theta$.

$$
\tau_{\theta}=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} .
$$

Also note, $\dot{i}_{i}=\dot{\theta} \frac{\partial l_{i}}{\partial \theta}+\dot{\phi} \frac{\partial l_{i}}{\partial \phi}$.

Optimal control

Case II: Simplified muscles
Each musculotendon consist of a linear spring with spring constant k_{i}, a damper with damping constant b_{i}, and an active force F_{i}.

Projecting the torques to List
$\theta \longrightarrow \theta+\delta \theta, \phi \longrightarrow \phi$.
Virtual work by the spring: $k_{i}\left(l_{i}-l_{i_{0}}\right) \delta l=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} d \theta$.

$$
\tau_{\theta}=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} .
$$

Also note, $\dot{l}_{i}=\dot{\theta} \frac{\partial l_{i}}{\partial \theta}+\dot{\phi} \frac{\partial l_{i}}{\partial \phi}$.
Therefore for the damper: $F_{\text {damp }}=b_{i} \dot{l}_{i}=b_{i}\left(\dot{\theta} \frac{\partial l_{i}}{\partial \theta}+\dot{\phi} \frac{\partial l_{i}}{\partial \phi}\right)$

Optimal control

Case II: Simplified muscles

Each musculotendon consist of a linear spring with spring constant k_{i}, a damper with damping constant b_{i}, and an active force F_{i}.

Projecting the torques to List
$\theta \longrightarrow \theta+\delta \theta, \phi \longrightarrow \phi$.
Virtual work by the spring: $k_{i}\left(l_{i}-l_{i_{0}}\right) \delta l=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} d \theta$.

$$
\tau_{\theta}=k_{i}\left(l_{i}-l_{i_{0}}\right) \frac{\partial l_{i}}{\partial \theta} .
$$

Also note, $\dot{l}_{i}=\dot{\theta} \frac{\partial l_{i}}{\partial \theta}+\dot{\phi} \frac{\partial l_{i}}{\partial \phi}$.
Therefore for the damper: $F_{\text {damp }}=b_{i} \dot{i}_{i}=b_{i}\left(\dot{\theta} \frac{\partial l_{i}}{\partial \theta}+\dot{\phi} \frac{\partial l_{i}}{\partial \phi}\right)$
Then the torque with the active force F_{i} with $C_{i}=k_{i}\left(l_{i}-l_{i_{0}}\right)+b_{i}\left(\dot{\theta} \frac{\partial l_{i}}{\partial \theta}+\dot{\phi} \frac{\partial l_{i}}{\partial \phi}\right)$:

$$
\tau_{\theta}=\sum_{i=1}^{6}\left[F_{i}+C_{i}\right] \frac{\partial l_{i}}{\partial \theta} \quad \tau_{\phi}=\sum_{i=1}^{6}\left[F_{i}+C_{i}\right] \frac{\partial l_{i}}{\partial \phi}
$$

Optimal control

The optimal control problem becomes one of minimizing

$$
\int_{0}^{T} \sum_{i=1}^{6} F_{i}^{2} \mathrm{~d} t
$$

Optimal control

The optimal control problem becomes one of minimizing

$$
\int_{0}^{T} \sum_{i=1}^{6} F_{i}^{2} \mathrm{~d} t
$$

According to PMP as before, we can obtain

$$
F_{i}^{*}=-\frac{\lambda_{2}}{4 \sin ^{2}\left(z_{3} / 2\right)} \frac{\partial l_{i}}{\partial \theta}-\lambda_{4} \frac{\partial l_{i}}{\partial \phi}
$$

Optimal control

The optimal control problem becomes one of minimizing

$$
\int_{0}^{T} \sum_{i=1}^{6} F_{i}^{2} \mathrm{~d} t
$$

According to PMP as before, we can obtain

$$
F_{i}^{*}=-\frac{\lambda_{2}}{4 \sin ^{2}\left(z_{3} / 2\right)} \frac{\partial l_{i}}{\partial \theta}-\lambda_{4} \frac{\partial l_{i}}{\partial \phi}
$$

Optimal path and muscle forces, from $(\pi / 6, \pi / 6)$ to $(\pi / 10, \pi / 10)$

Optimal control

Case III: Hill-type muscles

Hill-type musculotendon

Optimal control

Case III: Hill-type muscles

$$
\begin{aligned}
& \tau_{\theta}=\sum_{i=1}^{6} F_{\text {total }}^{i} \frac{\partial l_{i}}{\partial \theta} \\
& \tau_{\phi}=\sum_{i=1}^{6} F_{\text {total }}^{i} \frac{\partial l_{i}}{\partial \phi}
\end{aligned}
$$

where

$$
F_{\text {total }}^{i}=F_{t}^{i}-\left(F_{a c t}^{i}+F_{p e}^{i}+B_{m}^{i} \dot{i}_{i}\right) .
$$

Optimal control

Case III: Hill-type muscles

$$
\begin{aligned}
& \tau_{\theta}=\sum_{i=1}^{6} F_{\text {total }}^{i} \frac{\partial l_{i}}{\partial \theta} \\
& \tau_{\phi}=\sum_{i=1}^{6} F_{\text {total }}^{i} \frac{\partial l_{i}}{\partial \phi}
\end{aligned}
$$

where

$$
F_{\text {total }}^{i}=F_{t}^{i}-\left(F_{a c t}^{i}+F_{p e}^{i}+B_{m}^{i} \dot{i}_{i}\right)
$$

The problem beomes one of minimizing

$$
\int_{0}^{T} \sum_{i=1}^{6}\left[F_{a c t}^{i}(t)\right]^{2} \mathrm{~d} t
$$

Optimal control

Optimal path from $(\pi / 5, \pi / 6)$ to $(\pi / 10, \pi / 10)$

Optimal control

Lateral and medial rectus muscle activities

Superior and inferior rectus muscle activities

Lengths of (Eye) Rotations

$$
\begin{aligned}
\ell(\sigma) & =\int_{a}^{b}\left\|\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right\| \mathrm{d} t \\
& =\int_{a}^{b} \sqrt{\dot{\theta}^{2} g_{11}+2 \dot{\theta} \dot{\phi} g_{12}+\dot{\phi}^{2} g_{22}} \mathrm{~d} t \\
& =\int_{a}^{b} \sqrt{4 \sin ^{2}(\phi / 2) \dot{\theta}^{2}+\dot{\phi}^{2}} \mathrm{~d} t
\end{aligned}
$$

Lengths of (Eye) Rotations

$$
\begin{aligned}
\ell(\sigma) & =\int_{a}^{b}\left\|\dot{\theta} \frac{\partial}{\partial \theta}+\dot{\phi} \frac{\partial}{\partial \phi}\right\| \mathrm{d} t \\
& =\int_{a}^{b} \sqrt{\dot{\theta}^{2} g_{11}+2 \dot{\theta} \dot{\phi} g_{12}+\dot{\phi}^{2} g_{22}} \mathrm{~d} t \\
& =\int_{a}^{b} \sqrt{4 \sin ^{2}(\phi / 2) \dot{\theta}^{2}+\dot{\phi}^{2}} \mathrm{~d} t
\end{aligned}
$$

From	To	distance (radians)		
(θ, ϕ)	(θ, ϕ)	$S O(3)$	Geodesic on List	Min. energy on List
$\left(\frac{\pi}{4}, \frac{\pi}{6}\right)$	$\left(\frac{\pi}{8}, \frac{\pi}{8}\right)$	0.219	0.222	0.324
$\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$	$\left(\frac{\pi}{8}, \frac{\pi}{6}\right)$	0.359	0.368	0.368
$\left(\frac{\pi}{6}, \frac{\pi}{10}\right)$	$\left(\frac{\pi}{8}, \frac{\pi}{4}\right)$	0.476	0.480	0.482

Outline of the talk

- Anatomy of the eye $\sqrt{ }$
- Planer eye movements \checkmark
- Three-dimensional eye movements: Geometry $\sqrt{ }$
- Eye as a simple mechanical control system \checkmark
- Optimal control of the eye \checkmark
- Conclusions and future directions

Summary and Future directions

Summary:

- Learning curves for planer saccadic eye movements.

Summary and Future directions

Summary:

- Learning curves for planer saccadic eye movements.
- Geometry of List, the Listing rotations. As far as we are aware, this is the first study of its kind.

Summary and Future directions

Summary:

- Learning curves for planer saccadic eye movements.
- Geometry of List, the Listing rotations. As far as we are aware, this is the first study of its kind.
- A dynamic model for the three-dimensional eye movements. Eye treated as a "simple mechanical control system".

Summary and Future directions

Summary:

- Learning curves for planer saccadic eye movements.
- Geometry of List, the Listing rotations. As far as we are aware, this is the first study of its kind.
- A dynamic model for the three-dimensional eye movements. Eye treated as a "simple mechanical control system".
- Optimal control stratergies for three-dimensional eye movements.

Summary and Future directions

Future directions:

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques $\tau_{\theta}, \tau_{\phi}$.

Summary and Future directions

Future directions:

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques $\tau_{\theta}, \tau_{\phi}$.
- Comparison with actual eye movement recordings. Three-dimensional case is not very well looked at.

Summary and Future directions

Future directions:

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques $\tau_{\theta}, \tau_{\phi}$.
- Comparison with actual eye movement recordings. Three-dimensional case is not very well looked at.
- Study of VOR with head movements and the smooth pursuit movement, to understand the tracking problem.

Summary and Future directions

Future directions:

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques $\tau_{\theta}, \tau_{\phi}$.
- Comparison with actual eye movement recordings. Three-dimensional case is not very well looked at.
- Study of VOR with head movements and the smooth pursuit movement, to understand the tracking problem.
- Many other types of human movements can be studied with a similar geometric setting and as "simple mechanical control systems".

Summary and Future directions

Future directions:

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques $\tau_{\theta}, \tau_{\phi}$.
- Comparison with actual eye movement recordings. Three-dimensional case is not very well looked at.
- Study of VOR with head movements and the smooth pursuit movement, to understand the tracking problem.
- Many other types of human movements can be studied with a similar geometric setting and as "simple mechanical control systems".

[^0]: ". . . all rotation matrices employed have their axes of rotations orthogonal to the standard (or frontal) gaze direction"

