

Geometry and Control of Human Eye Movements

Ashoka D. Polpitiya

adpol@wustl.edu

(Under the supervision of: Professors Bijoy K. Ghosh & W. P. Dayawansa)

Center for BioCybernetics and Intelligent Systems School of Engineering and Applied Science Washington University in Saint Louis http://www.cbcis.wustl.edu

• To understand the **way the brain plans, controls, and executes** movements in general.

Of all movements, eye movements are the most appealing ones:

- To understand the **way the brain plans, controls, and executes** movements in general.

Of all movements, eye movements are the most appealing ones:

- only three pairs of muscles control the movement
- eye has a **negligible** inertia
- only **three** degrees of freedom

- To understand the **way the brain plans, controls, and executes** movements in general.

Of all movements, eye movements are the most appealing ones:

- only three pairs of muscles control the movement
- eye has a **negligible** inertia
- only three degrees of freedom
- As a clinical utility.

To aid diagnoses, clarify treatment possibilities, explanations to eye disorders (e.g. squint)

- To understand the **way the brain plans, controls, and executes** movements in general.

Of all movements, eye movements are the most appealing ones:

- only three pairs of muscles control the movement
- eye has a **negligible** inertia
- only three degrees of freedom
- As a clinical utility.

To aid diagnoses, clarify treatment possibilities, explanations to eye disorders (e.g. squint)

• In robotics

- Study of eye movements has been a topic of interest for a long time since the early work of **Donders**, **Listing** and **Helmholtz** in 1800's.

- Study of eye movements has been a topic of interest for a long time since the early work of **Donders**, **Listing** and **Helmholtz** in 1800's.
- **D. A. Robinson** (1964) proposed a simple mechanical model for planer eye movements.

- Study of eye movements has been a topic of interest for a long time since the early work of **Donders**, **Listing** and **Helmholtz** in 1800's.
- **D. A. Robinson** (1964) proposed a simple mechanical model for planer eye movements.
- Though the planer case has been thoroughly looked at, three-dimensional case has been difficult.

- Study of eye movements has been a topic of interest for a long time since the early work of **Donders**, **Listing** and **Helmholtz** in 1800's.
- **D. A. Robinson** (1964) proposed a simple mechanical model for planer eye movements.
- Though the planer case has been thoroughly looked at, three-dimensional case has been difficult.
- Confusing arguments about the **"Listing's law"** for eye movements as well as the control stratergy by brain areas.

- Study of eye movements has been a topic of interest for a long time since the early work of **Donders**, **Listing** and **Helmholtz** in 1800's.
- **D. A. Robinson** (1964) proposed a simple mechanical model for planer eye movements.
- Though the planer case has been thoroughly looked at, three-dimensional case has been difficult.
- Confusing arguments about the "Listing's law" for eye movements as well as the control stratergy by brain areas.
- Lack of a dynamic model. (some static models exist, Ex: **Orbit**[©].)

- Study of eye movements has been a topic of interest for a long time since the early work of **Donders**, **Listing** and **Helmholtz** in 1800's.
- **D. A. Robinson** (1964) proposed a simple mechanical model for planer eye movements.
- Though the planer case has been thoroughly looked at, three-dimensional case has been difficult.
- Confusing arguments about the **"Listing's law"** for eye movements as well as the control stratergy by brain areas.
- Lack of a dynamic model. (some static models exist, Ex: **Orbit**[©].)
- There has not been a rigorous treatment using modern control theory and geometric tools.

• Study of eye movements has been a topic of interest for a long time

g and **Helmholtz** in 1800's.

ole mechanical model for planer

ughly looked at,

lt.

g's law" for eye movements as eas.

models exist, Ex: **Orbit[©]**.)

• There has not been a rigorous treatment using modern control theory and geometric tools.

• Anatomy of the eye

- Anatomy of the eye
- Planer eye movements

• Anatomy of the eye

- Planer eye movements
- Three-dimensional eye movements : Geometry

• Anatomy of the eye

- Planer eye movements
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system

• Anatomy of the eye

- Planer eye movements
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye

• Anatomy of the eye

- Planer eye movements
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Anatomy of the Eye

Muscle pulleys

Muscle pulleys

Muscle pulleys

Saccades: are the fastest eye movements (velocities: 30 ~ 700⁰/s and lasting for about 40ms). Aim is to precisely redirect the gaze to the target to have a stabilized image on the retina (diameter of about a degree). Ex: reading, a sudden eccentric sound. Happens under open-loop control.

- Saccades: are the fastest eye movements (velocities: 30 ~ 700⁰/s and lasting for about 40ms). Aim is to precisely redirect the gaze to the target to have a stabilized image on the retina (diameter of about a degree). Ex: reading, a sudden eccentric sound. Happens under open-loop control.
- Smooth pursuits: are the following eye movements evoked by a slow movement of a fixated target. Velocities: up to 50⁰/s. Retinal error velocity is the input.

- Saccades: are the fastest eye movements (velocities: 30 ~ 700⁰/s and lasting for about 40ms). Aim is to precisely redirect the gaze to the target to have a stabilized image on the retina (diameter of about a degree). Ex: reading, a sudden eccentric sound. Happens under open-loop control.
- Smooth pursuits: are the following eye movements evoked by a slow movement of a fixated target. Velocities: up to 50⁰/s. Retinal error velocity is the input.
- Vestibular Ocular Reflex (VOR): compensates for the movement of the head ensuring a clear image of the target on retina.

- Saccades: are the fastest eye movements (velocities: 30 ~ 700⁰/s and lasting for about 40ms). Aim is to precisely redirect the gaze to the target to have a stabilized image on the retina (diameter of about a degree). Ex: reading, a sudden eccentric sound. Happens under open-loop control.
- Smooth pursuits: are the following eye movements evoked by a slow movement of a fixated target. Velocities: up to 50⁰/s. Retinal error velocity is the input.
- Vestibular Ocular Reflex (VOR): compensates for the movement of the head ensuring a clear image of the target on retina.
- Vergence movements: are the ones where the target moves along the gaze axis toward or away from the eye. The eye, which has the target moves along the gaze axis, remains stationary.

• Planer eye movements

- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Planer Eye Movements

- To simplify experiments and analysis.
- Study of planer eye movements has led to a remarkable understanding of one-dimensional movements, from the muscle mechanics to the underlying neural control system.
- A detailed biomechanical model was proposed by Martin & Schovanec (1997), (M-S model) and studied saccadic eye movements. Sugathadasa et al.(2000) further investigated smooth-pursuit tracking problem.

Planer Eye Movements

- To simplify experiments and analysis.
- Study of planer eye movements has led to a remarkable understanding of one-dimensional movements, from the muscle mechanics to the underlying neural control system.
- A detailed biomechanical model was proposed by Martin & Schovanec (1997), (M-S model) and studied saccadic eye movements. Sugathadasa et al.(2000) further investigated smooth-pursuit tracking problem.
- **Polpitiya & Ghosh (2002)** proposed **"Learning Curves"** for open-loop saccadic movement control using the M-S model.

The equation of motion for the eye globe can be written as:

 $J_g \ddot{\theta} + B_g \dot{\theta} + K_g \theta = F_{t_1} - F_{t_2}$

where J_G , B_G , and K_G denote the globe inertia, globe viscosity, and globe elasticity. J_g , B_g , K_g are obtained as $J_g = \frac{J_G}{980r(180/\pi)}$ with r denoting the radius of the eye globe.

The equation of motion for the eye globe can be written as:

 $J_g \ddot{\theta} + B_g \dot{\theta} + K_g \theta = F_{t_1} - F_{t_2}$

where J_G , B_G , and K_G denote the globe inertia, globe viscosity, and globe elasticity. J_g , B_g , K_g are obtained as $J_g = \frac{J_G}{980r(180/\pi)}$ with r denoting the radius of the eye globe.

Model can be written in the form $\dot{x} = f(x) + g_1(x)u_1 + g_2(x)u_2$ where u_1 and u_2 are the neural inputs, let the state vector be $x^T(t) = [\theta, \dot{\theta}, l_{m1}, \dot{l}_{m1}, l_{m2}, \dot{l}_{m2}, F_{t_1}, F_{t_2}, a_1, a_2]$.

The equation of motion for the eye globe can be written as:

$$J_g \ddot{\theta} + B_g \dot{\theta} + K_g \theta = F_{t_1} - F_{t_2}$$

where J_G , B_G , and K_G denote the globe inertia, globe viscosity, and globe elasticity. J_g , B_g , K_g are obtained as $J_g = \frac{J_G}{980r(180/\pi)}$ with r denoting the radius of the eye globe.

Model can be written in the form $\dot{x} = f(x) + g_1(x)u_1 + g_2(x)u_2$ where u_1 and u_2 are the neural inputs, let the state vector be $x^T(t) = [\theta, \dot{\theta}, l_{m1}, \dot{l}_{m2}, \dot{l}_{m2}, F_{t_1}, F_{t_2}, a_1, a_2]$.

$$f(x) = \begin{bmatrix} x_2 \\ \frac{1}{Jg}(x_7 - x_8 - B_g x_2 - K_g x_1) \\ x_4 \\ \frac{980}{M}(x_7 - F_{act}(x_3, x_4, x_9) - F_{pe}(x_3) - B_{pm}(\frac{180}{\pi r})x_4) \\ x_6 \\ \frac{980}{M}(x_8 - F_{act}(x_5, x_6, x_{10}) - F_{pe}(x_5) - B_{pm}(\frac{180}{\pi r})x_6) \\ K_t(x_7) \left[-x_2 - (\frac{180}{\pi r})x_4 \right] \\ K_t(x_8) \left[x_2 - (\frac{180}{\pi r})x_6 \right] \\ -\frac{x_9}{\tau_1} \\ -\frac{x_{10}}{\tau_1} \end{bmatrix}$$

$$\begin{split} g_1(x) &= (1/\tau_1) \left[0, 0, 0, 0, 0, 0, 0, 0, 1, 0 \right] \\ g_2(x) &= (1/\tau_1) \left[0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \right]. \end{split}$$

CBCIS - p. 11/4

M-S Model: Simulations

Figure 1: Neuronal inputs and the resulting activation signals to the agonist and antagonist (10^0 saccade)

M-S Model: Simulations

Figure 2: Simulation of 10^o Saccade and the corresponding forces in the tendons

Learning Curves

Figure 3: "Learning Curves": Cubic Hermite interpolant splines developed from horizontal saccadic eye movements originating from the primary position. The bottom two figures demonstrate how the 'T' value changes with the initial gaze position.

Learning Curves

Figure 4: "Learning Curves": Cubic Hermite interpolant splines developed from horizontal saccadic eye movements originating from the primary position. The bottom two figures demonstrate how the 'T' value changes with the initial gaze position.

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

- SO(3), the space of 3 × 3 rotation matrices, is the obvious choice for the configuration space.

$$SO(3) = \{ \mathbf{R} : \mathbb{R}^3 \to \mathbb{R}^3 \mid (\mathbf{R}x, \mathbf{R}y)_{\mathbb{R}^3} = (x, y)_{\mathbb{R}^3}, \det \mathbf{R} = 1 \}$$
$$= \{ \mathbf{R} : \mathbb{R}^3 \to \mathbb{R}^3 \mid \mathbf{R}\mathbf{R}^T = \mathrm{Id}, \det \mathbf{R} = 1 \}$$

- SO(3), the space of 3 × 3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.

- SO(3), the space of 3 × 3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.
- This ambiguity can precisely be resolved according to the observations by Dondors, Listing and Helmholtz in 1800's. Better known as Listing's Law:

- SO(3), the space of 3 × 3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.
- This ambiguity can precisely be resolved according to the observations by **Dondors, Listing and Helmholtz** in 1800's. Better known as **Listing's Law**:

"... all rotation matrices employed have their axes of rotations orthogonal to the standard (or frontal) gaze direction"

- SO(3), the space of 3 × 3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.
- This ambiguity can precisely be resolved according to the observations by Dondors, Listing and Helmholtz in 1800's. Better known as Listing's Law:

"... all rotation matrices employed have their axes of rotations orthogonal to the standard (or frontal) gaze direction"

- SO(3), the space of 3 × 3 rotation matrices, is the obvious choice for the configuration space.
- If only the gaze direction is important, each direction corresponds to a circle of rotation matrices.
- This ambiguity can precisely be resolved according to the observations by Dondors, Listing and Helmholtz in 1800's. Better known as Listing's Law:

"... all rotation matrices employed have their axes of rotations orthogonal to the standard (or frontal) gaze direction"

Eye as a *mechanical system with holonomic constraints*. Configuration space becomes a two dimensional submanifold of **SO**(3).

⇒ "Listing Space (*List*)"

- Space of quaternions are denoted by **Q**.
- $a \in \mathbf{Q}$ can be written as $a_0 \overrightarrow{\mathbf{1}} + a_1 \overrightarrow{\mathbf{i}} + a_2 \overrightarrow{\mathbf{j}} + a_3 \overrightarrow{\mathbf{k}}$.

•
$$\mathbf{vec}(a) = a_1 \overrightarrow{\mathbf{i}} + a_2 \overrightarrow{\mathbf{j}} + a_3 \overrightarrow{\mathbf{k}}$$

•
$$\mathbf{scal}(a) = a_0 \mathbf{1}$$

- The vector $a_1 \overrightarrow{\mathbf{i}} + a_2 \overrightarrow{\mathbf{j}} + a_3 \overrightarrow{\mathbf{k}}$ will be identified with $(a_1, a_2, a_3) \in \mathbb{R}^3$ without any explicit mention of it.
- Quaternion product: $p.q = p_0q_0 \mathbf{p} \cdot \mathbf{q} + p_0\mathbf{q} + q_0\mathbf{p} + \mathbf{p} \times \mathbf{q}$.

Thus we have maps,

vec :
$$\mathbf{Q} \to \mathbb{R}^3$$
, $a \mapsto (a_1, a_2, a_3)$,

and

$$\mathbf{scal}: \mathbf{Q} \to \mathbb{R}, \ a \mapsto a_0.$$

Each $q \in S^3$ (space of unit quaternions) can be written as

$$q = \cos(\alpha/2)\vec{1} + \sin(\alpha/2)n_1\vec{i} + \sin(\alpha/2)n_2\vec{j} + \sin(\alpha/2)n_3\vec{k}$$

where, $\alpha \in [0, \pi]$ and (n_1, n_2, n_3) is a unit vector in \mathbb{R}^3 .

Define

$$\mathbf{rot}: \mathrm{S}^3 \to \mathbf{SO}(3)$$

as the standard map from S^3 into SO(3) which maps $cos(\alpha/2)\vec{1} + sin(\alpha/2)n_1\vec{i} + sin(\alpha/2)n_2\vec{j} + sin(\alpha/2)n_3\vec{k}$ to a rotation around the axis n by a counterclockwise angle α .

There are two explicit ways of describing this map. First,

$$\mathbf{rot}(q)(v_1, v_2, v_3) = \mathbf{vec}(q.(v_1\overrightarrow{\mathbf{i}} + v_2\overrightarrow{\mathbf{j}} + v_3\overrightarrow{\mathbf{k}}).q^{-1}) \ .$$

There are two explicit ways of describing this map. First,

$$rot(q)(v_1, v_2, v_3) = vec(q.(v_1 \overrightarrow{i} + v_2 \overrightarrow{j} + v_3 \overrightarrow{k}).q^{-1})$$
.

Second,

$$\mathbf{rot}(\mathbf{q}) = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & q_0^2 + q_2^2 - q_1^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & q_0^2 + q_3^2 - q_1^2 - q_2^2 \end{bmatrix} \in \mathbf{SO}(3).$$

Outline of the talk

- * * *
- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements : Geometry
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements : Geometry
 - Local coordinates on *List*.
 - Riemannian metric on *List*.
 - Levi-Civita connection on *List*.
 - Geodesics on *List*.
 - Curvature on *List*.
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Local coordinates on *List*

Let x_3 axis is aligned with the normal gaze direction, then **Listing's law** amounts to a statement that all eye rotations have quaternion representations $q \in S^3$ with $q_3 = 0$.

List is diffeomorphic to \mathbb{P}^2 (antipodal points identified).

Local coordinates on *List*

(Note: this fails when $\phi = 0$ or $\phi = 2\pi$ since in both cases the the corresponding rotation is identity regardless of the value of θ)

Riemannian metric on *List*

Let's calculate the Riemannian metric on *List* induced from SO(3).

$$SO(3) = \{ \mathbf{R} : \mathbb{R}^3 \to \mathbb{R}^3 \mid (\mathbf{R}x, \mathbf{R}y)_{\mathbb{R}^3} = (x, y)_{\mathbb{R}^3}, \det \mathbf{R} = 1 \}$$
$$= \{ \mathbf{R} : \mathbb{R}^3 \to \mathbb{R}^3 \mid \mathbf{R}\mathbf{R}^T = \mathrm{Id}, \det \mathbf{R} = 1 \}$$

Riemannian metric on *List*

Let's calculate the Riemannian metric on *List* induced from SO(3).

$$\begin{aligned} \mathsf{SO}(3) &= \{ \boldsymbol{R} : \mathbb{R}^3 \to \mathbb{R}^3 \mid (\boldsymbol{R}\boldsymbol{x}, \boldsymbol{R}\boldsymbol{y})_{\mathbb{R}^3} = (\boldsymbol{x}, \boldsymbol{y})_{\mathbb{R}^3}, \, \det \boldsymbol{R} = 1 \} \\ &= \{ \boldsymbol{R} : \mathbb{R}^3 \to \mathbb{R}^3 \mid \boldsymbol{R}\boldsymbol{R}^T = \mathrm{Id}, \, \det \boldsymbol{R} = 1 \} \end{aligned}$$

The body *angular velocity* is defined as

$$\mathbf{\Omega}(t) = \mathbf{R}^T(t) \dot{\mathbf{R}}(t).$$

 $\mathbf{\Omega}(t)$ is a skew-symmetric matrix.

Riemannian metric on *List*

Let's calculate the Riemannian metric on *List* induced from SO(3).

$$\begin{aligned} \mathsf{SO}(3) &= \{ \boldsymbol{R} : \mathbb{R}^3 \to \mathbb{R}^3 \mid (\boldsymbol{R}\boldsymbol{x}, \boldsymbol{R}\boldsymbol{y})_{\mathbb{R}^3} = (\boldsymbol{x}, \boldsymbol{y})_{\mathbb{R}^3}, \, \det \boldsymbol{R} = 1 \} \\ &= \{ \boldsymbol{R} : \mathbb{R}^3 \to \mathbb{R}^3 \mid \boldsymbol{R}\boldsymbol{R}^T = \mathrm{Id}, \, \det \boldsymbol{R} = 1 \} \end{aligned}$$

The body *angular velocity* is defined as

$$\mathbf{\Omega}(t) = \mathbf{R}^T(t) \dot{\mathbf{R}}(t).$$

 $\mathbf{\Omega}(t)$ is a skew-symmetric matrix.

Since

$$\dot{\mathbf{R}}(t) = \mathbf{R}(t)\mathbf{\Omega}(t), \qquad \mathbf{\Omega}^{T}(t) = -\mathbf{\Omega}(t),$$

the tangent space

$$\mathsf{T}_{R}\mathsf{SO}(3) = \{\mathbf{R}\mathbf{\Omega} \mid \mathbf{\Omega}^{T} = -\mathbf{\Omega}\}, \qquad \mathbf{R} \in \mathsf{SO}(3).$$

Then the tangent space to SO(3) at the identity:

$$\mathsf{T}_{\mathrm{Id}}\mathsf{SO}(3) = \{ \mathbf{\Omega} : \mathbb{R}^3 \to \mathbb{R}^3 \mid \mathbf{\Omega}^T = -\mathbf{\Omega} \} = so(3)$$

Note that the space so(3) is the Lie algebra of the Lie group SO(3).

Assuming that the eye as a perfect sphere, and its moment of inertia as $I_{3\times3}$, the left invariant Riemannian metric on SO(3) given by,

$$\left< \mathbf{\Omega}(e_i), \mathbf{\Omega}(e_j) \right>_I = \delta_{i,j} ,$$

where,

$$\mathbf{\Omega}(e_k) = \begin{bmatrix} 0 & \delta_{3,k} & -\delta_{2,k} \\ -\delta_{3,k} & 0 & \delta_{1,k} \\ \delta_{2,k} & -\delta_{1,k} & 0 \end{bmatrix},$$

and $\{\delta_{l,m}\}$ denotes the Kronecker delta function.

Now $\vec{i}, \vec{j}, \vec{k}$ is an orthonormal basis of $T_{\vec{1}}S^3$, and recall that $\mathbf{rot} : S^3 \to SO(3)$, then

$$\operatorname{rot}\left(\left[\begin{array}{c} \cos(t/2) \\ \sin(t/2) \\ 0 \\ 0 \end{array}\right]\right) = \operatorname{e}^{\operatorname{t}\Omega(e_1)}, \quad \operatorname{rot}\left(\left[\begin{array}{c} \cos(t/2) \\ 0 \\ \sin(t/2) \\ 0 \end{array}\right]\right) = \operatorname{e}^{\operatorname{t}\Omega(e_2)}, \quad \operatorname{rot}\left(\left[\begin{array}{c} \cos(t/2) \\ 0 \\ 0 \\ \sin(t/2) \end{array}\right]\right) = \operatorname{e}^{\operatorname{t}\Omega(e_3)}.$$

Now \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} is an orthonormal basis of $T_{\overrightarrow{1}}S^3$, and recall that **rot** : $S^3 \to SO(3)$, then

$$\operatorname{rot}\left(\left[\begin{array}{c} \cos(t/2) \\ \sin(t/2) \\ 0 \\ 0 \end{array}\right]\right) = \operatorname{e}^{\operatorname{t}\Omega(e_1)}, \quad \operatorname{rot}\left(\left[\begin{array}{c} \cos(t/2) \\ 0 \\ \sin(t/2) \\ 0 \end{array}\right]\right) = \operatorname{e}^{\operatorname{t}\Omega(e_2)}, \quad \operatorname{rot}\left(\left[\begin{array}{c} \cos(t/2) \\ 0 \\ 0 \\ \sin(t/2) \\ \sin(t/2) \end{array}\right]\right) = \operatorname{e}^{\operatorname{t}\Omega(e_3)}.$$

Notice that,

$$\frac{d}{dt}\Big|_{t=0} \begin{bmatrix} \cos(t/2) \\ \sin(t/2) \\ 0 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \frac{\overrightarrow{\mathbf{i}}}{2}, \qquad \qquad \frac{d}{dt}\Big|_{t=0} e^{t\mathbf{\Omega}(e_1)} = \mathbf{\Omega}(e_1).$$

Now $\vec{i}, \vec{j}, \vec{k}$ is an orthonormal basis of $T_{\vec{1}}S^3$, and recall that **rot** : $S^3 \rightarrow SO(3)$, then

Therefore,

$$\operatorname{rot}_{\overrightarrow{i}}(\overrightarrow{i}/2) = \Omega(e_1), \qquad \operatorname{rot}_{\overrightarrow{i}}(\overrightarrow{j}/2) = \Omega(e_2), \qquad \operatorname{rot}_{\overrightarrow{i}}(\overrightarrow{k}/2) = \Omega(e_3).$$

Hence $\{\operatorname{rot}_{\overrightarrow{i1}}, \operatorname{rot}_{\overrightarrow{i1}}, \operatorname{rot$

The Riemannian metric on *List* has the form

$$g = ds^2 = \sum_{ij=1}^n g_{ij} dx_i dx_j$$

where

$$g_{ij} = \left\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right\rangle, \qquad (x_1, x_2) = (\theta, \phi).$$

Let $\rho : [0, \pi] \times [0, 2\pi] \rightarrow S^3$,

$$\rho(\theta, \phi) = \begin{bmatrix} \cos(\phi/2) \\ \cos(\theta)\sin(\phi/2) \\ \sin(\theta)\sin(\phi/2) \\ 0 \end{bmatrix}$$

Let $\rho : [0, \pi] \times [0, 2\pi] \rightarrow S^3$,

$$\rho(\theta,\phi) = \begin{bmatrix} \cos(\phi/2) \\ \cos(\theta)\sin(\phi/2) \\ \sin(\theta)\sin(\phi/2) \\ 0 \end{bmatrix}.$$

$$\begin{array}{c} List & \xrightarrow{\rho} & S^{3} \\ \downarrow & \downarrow \\ T_{(\theta,\phi)}List & \xrightarrow{\rho_{*}} & T_{\rho(\theta,\phi)}S^{3} \end{array}$$

Then the Jacobian

$$\mathcal{J}(\rho)(\theta,\phi) = \begin{pmatrix} \rho_{*(\theta,\phi)}(\frac{\partial}{\partial\theta}) & \rho_{*(\theta,\phi)}(\frac{\partial}{\partial\phi}) \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{2}sin(\phi/2) \\ -sin(\theta)sin(\phi/2) & \frac{1}{2}cos(\theta)cos(\phi/2) \\ cos(\theta)sin(\phi/2) & \frac{1}{2}sin(\theta)cos(\phi/2) \\ 0 & 0 \end{pmatrix}$$

Let $\rho : [0, \pi] \times [0, 2\pi] \to S^3$, $\rho(\theta, \phi) = \begin{bmatrix} \cos(\phi/2) \\ \cos(\theta)\sin(\phi/2) \\ \sin(\theta)\sin(\phi/2) \\ 0 \end{bmatrix}.$ $List \longrightarrow S^3$ $\downarrow \qquad \downarrow \qquad \downarrow$ $T_{(\theta, \phi)}List \longrightarrow T_{\rho(\theta, \phi)}S^3$

Then the Jacobian

$$\mathcal{J}(\rho)(\theta,\phi) = \begin{pmatrix} \rho_{*(\theta,\phi)}(\frac{\partial}{\partial\theta}) & \rho_{*(\theta,\phi)}(\frac{\partial}{\partial\phi}) \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{2}\sin(\phi/2) \\ -\sin(\theta)\sin(\phi/2) & \frac{1}{2}\cos(\theta)\cos(\phi/2) \\ \cos(\theta)\sin(\phi/2) & \frac{1}{2}\sin(\theta)\cos(\phi/2) \\ 0 & 0 \end{pmatrix}$$

Also notice that

$$\rho(\theta,\phi).\vec{\mathbf{i}} = \begin{bmatrix} -\cos(\theta)\sin(\phi/2) \\ \cos(\phi/2) \\ 0 \\ -\sin(\theta)\sin(phi/2) \end{bmatrix}, \quad \rho(\theta,\phi).\vec{\mathbf{j}} = \begin{bmatrix} -\sin(\theta)\sin(\phi/2) \\ 0 \\ \cos(\phi/2) \\ \cos(\theta)\sin(\phi/2) \end{bmatrix}, \quad \rho(\theta,\phi).\vec{\mathbf{k}} = \begin{bmatrix} 0 \\ \sin(\theta)\sin(\phi/2) \\ -\cos(\theta)\sin(\phi/2) \\ \cos(\phi/2) \end{bmatrix}$$

For θ = 0, it is easily observed that,

$$\begin{split} \rho_{*(0,\phi)}(\frac{\partial}{\partial \theta}) &= \sin(\phi/2)\cos(\phi/2)\rho(0,\phi).\overrightarrow{\mathbf{j}} - \sin^2(\phi/2)\rho(0,\phi).\overrightarrow{\mathbf{k}},\\ \rho_{*(0,\phi)}(\frac{\partial}{\partial \phi}) &= \frac{1}{2}\rho(0,\phi).\overrightarrow{\mathbf{i}}. \end{split}$$
Riemannian metric on *List*, (cont'd.)

For $\theta = 0$, it is easily observed that,

$$\rho_{*(0,\phi)}(\frac{\partial}{\partial \theta}) = \sin(\phi/2)\cos(\phi/2)\rho(0,\phi).\vec{\mathbf{j}} - \sin^2(\phi/2)\rho(0,\phi).\vec{\mathbf{k}},$$

$$\rho_{*(0,\phi)}(\frac{\partial}{\partial \phi}) = \frac{1}{2}\rho(0,\phi).\vec{\mathbf{i}}.$$

Therefore

$$g_{11} = \left\langle \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta} \right\rangle = 4sin^2(\phi/2),$$

$$g_{12} = \left\langle \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi} \right\rangle = 0,$$

$$g_{22} = \left\langle \frac{\partial}{\partial \phi}, \frac{\partial}{\partial \phi} \right\rangle = 1.$$

Riemannian metric on *List*, (cont'd.)

For $\theta = 0$, it is easily observed that,

$$\rho_{*(0,\phi)}(\frac{\partial}{\partial \theta}) = \sin(\phi/2)\cos(\phi/2)\rho(0,\phi).\vec{\mathbf{j}} - \sin^2(\phi/2)\rho(0,\phi).\vec{\mathbf{k}},$$

$$\rho_{*(0,\phi)}(\frac{\partial}{\partial \phi}) = \frac{1}{2}\rho(0,\phi).\vec{\mathbf{i}}.$$

Therefore

$$g_{11} = \left\langle \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta} \right\rangle = 4sin^{2}(\phi/2),$$

$$g_{12} = \left\langle \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi} \right\rangle = 0,$$

$$g_{22} = \left\langle \frac{\partial}{\partial \phi}, \frac{\partial}{\partial \phi} \right\rangle = 1.$$

Thus, the Riemannian metric on *List*

$$g = 4sin^2(\phi/2)d\theta^2 + d\phi^2.$$

Levi-Civita connection on *List*

Riemannian connection, $\nabla : \mathfrak{X}(M) \to \mathfrak{X}(M)$ of a Riemannian manifold M, is uniquely defined by the *Koszul* formula

$$2\langle \nabla_X Y, Z \rangle = \mathscr{L}_X \langle Y, Z \rangle + \mathscr{L}_Y \langle X, Z \rangle - \mathscr{L}_Z \langle X, Y \rangle$$
$$-\langle X, [Y, Z] \rangle - \langle Y, [X, Z] \rangle + \langle Z, [X, Y] \rangle$$

A Riemannian connection ∇ has the following properties:

$$\begin{split} \nabla_{fX+gY} &= f \nabla_X + g \nabla_Y, \\ \nabla_X (aY+bZ) &= a \nabla_X Y + b \nabla_X Z, \\ \nabla_X fY &= \mathcal{L}_X fY + f \nabla_X Y, \end{split}$$

$$\begin{split} \nabla_X Y - \nabla_Y X &= [X, Y], \\ \mathcal{L}_X \langle Y, Z \rangle &= \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle \end{split}$$

for $X, Y, Z \in \mathfrak{X}(M)$, $f, g \in \mathfrak{F}(M)$ and $a, b \in \mathbb{R}$.

Levi-Civita connection on *List*

Riemannian connection, $\nabla : \mathfrak{X}(M) \to \mathfrak{X}(M)$ of a Riemannian manifold M, is uniquely defined by the *Koszul* formula

$$2\langle \nabla_X Y, Z \rangle = \mathscr{L}_X \langle Y, Z \rangle + \mathscr{L}_Y \langle X, Z \rangle - \mathscr{L}_Z \langle X, Y \rangle$$
$$-\langle X, [Y, Z] \rangle - \langle Y, [X, Z] \rangle + \langle Z, [X, Y] \rangle$$

A Riemannian connection ∇ has the following properties:

 $\begin{aligned} \nabla_{fX+gY} &= f \nabla_X + g \nabla_Y, \\ \nabla_X (aY+bZ) &= a \nabla_X Y + b \nabla_X Z, \\ \nabla_X fY &= \mathscr{L}_X fY + f \nabla_X Y, \end{aligned} \qquad \nabla_X Y - \nabla_Y X &= [X, Y], \\ \mathscr{L}_X \langle Y, Z \rangle &= \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle \end{aligned}$

for $X, Y, Z \in \mathfrak{X}(\mathsf{M})$, $f, g \in \mathfrak{F}(\mathsf{M})$ and $a, b \in \mathbb{R}$.

Using the subscripted coordinates (y_1, y_2) to denote (θ, ϕ) and *Christoffel symbols* Γ_{ii}^k

$$\nabla_{\partial y_i/\partial y_j} = \Gamma_{ij}^k \partial/\partial y_k,$$

Christoffel symbols are given by

$$\Gamma_{ij}^{k} = \sum_{h=1}^{2} \frac{g^{ih}}{2} \left\{ \frac{\partial g_{hj}}{\partial y_{k}} + \frac{\partial g_{hk}}{\partial y_{j}} - \frac{\partial g_{jk}}{\partial y_{h}} \right\} \quad i, j, k = 1, 2$$

CBCIS - p. 27/4

Levi-Civita connection on *List* (cont'd.)

Now

$$(g_{ij}) = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = \begin{pmatrix} 4\sin^2(\phi/2) & 0 \\ 0 & 1 \end{pmatrix}, \quad (\text{lower } g\text{-}ij'\text{s})$$
$$(g^{ij}) = \begin{pmatrix} g^{11} & g^{12} \\ g^{21} & g^{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{4\sin^2(\phi/2)} & 0 \\ 0 & 1 \end{pmatrix}. \quad (\text{upper } g\text{-}ij'\text{s})$$

and,

Levi-Civita connection on *List* (cont'd.)

Now

and,

$$(g_{ij}) = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = \begin{pmatrix} 4\sin^2(\phi/2) & 0 \\ 0 & 1 \end{pmatrix}, \quad (\text{lower } g\text{-}ij'\text{s})$$
$$(g^{ij}) = \begin{pmatrix} g^{11} & g^{12} \\ g^{21} & g^{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{4\sin^2(\phi/2)} & 0 \\ 0 & 1 \end{pmatrix}. \quad (\text{upper } g\text{-}ij'\text{s})$$

Thus, we obtain expressions for Christoffel symbols,

$$\begin{split} \Gamma_{11}^{1} &= 0, & \Gamma_{11}^{2} &= -sin(\phi), \\ \Gamma_{12}^{1} &= \frac{1}{2tan(\phi/2)}, & \Gamma_{21}^{1} &= \frac{1}{2tan(\phi/2)}, \\ \Gamma_{12}^{2} &= 0, & \Gamma_{21}^{2} &= 0, \\ \Gamma_{22}^{1} &= 0, & \Gamma_{22}^{2} &= 0. \end{split}$$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

* * *

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \nabla_{\left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)} \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now use the property: $\nabla_{fX+gY} = f\nabla_X + g\nabla_Y$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \left(\dot{\theta}\nabla_{\frac{\partial}{\partial\theta}} + \dot{\phi}\nabla_{\frac{\partial}{\partial\phi}}\right) \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now use the property: $\nabla_X(aY + bZ) = a\nabla_XY + b\nabla_XZ$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \dot{\theta}\nabla_{\frac{\partial}{\partial\theta}}\left(\dot{\theta}\frac{\partial}{\partial\theta}\right) + \dot{\theta}\nabla_{\frac{\partial}{\partial\theta}}\left(\dot{\phi}\frac{\partial}{\partial\phi}\right) + \dot{\phi}\nabla_{\frac{\partial}{\partial\phi}}\left(\dot{\theta}\frac{\partial}{\partial\theta}\right) + \dot{\phi}\nabla_{\frac{\partial}{\partial\phi}}\left(\dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now use the property: $\nabla_X f Y = \mathscr{L}_X f Y + f \nabla_X Y$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

* * *

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \ddot{\theta}\frac{\partial}{\partial\theta} + \ddot{\phi}\frac{\partial}{\partial\phi} + \dot{\theta}^2\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\theta} + \dot{\theta}\dot{\phi}\left(\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\phi} + \nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\theta}\right) + \dot{\phi}^2\nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\phi} = 0$$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \ddot{\theta}\frac{\partial}{\partial\theta} + \ddot{\phi}\frac{\partial}{\partial\phi} + \dot{\theta}^2 \nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\theta} + \dot{\theta}\dot{\phi}\left(\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\phi} + \nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\theta}\right) + \dot{\phi}^2\nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\phi} = 0$$

$$\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta} = \sum_{k=1}^{2} \Gamma_{11}^{k} \frac{\partial}{\partial y_{k}} = -\sin(\phi) \frac{\partial}{\partial \phi}$$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \ddot{\theta}\frac{\partial}{\partial\theta} + \ddot{\phi}\frac{\partial}{\partial\phi} + \dot{\theta}^2\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\theta} + \dot{\theta}\dot{\phi}\left(\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\phi} + \nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\theta}\right) + \dot{\phi}^2\nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\phi} = 0$$

$$\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \phi} = \sum_{k=1}^{2} \Gamma_{12}^{k} \frac{\partial}{\partial y_{k}} = \frac{1}{2 \tan(\phi/2)} \frac{\partial}{\partial \theta}$$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \ddot{\theta}\frac{\partial}{\partial\theta} + \ddot{\phi}\frac{\partial}{\partial\phi} + \dot{\theta}^2\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\theta} + \dot{\theta}\dot{\phi}\left(\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\phi} + \nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\theta}\right) + \dot{\phi}^2\nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\phi} = 0$$

$$\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \theta} = \sum_{k=1}^{2} \Gamma_{21}^{k} \frac{\partial}{\partial y_{k}} = \frac{1}{2 \tan(\phi/2)} \frac{\partial}{\partial \theta}$$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \ddot{\theta}\frac{\partial}{\partial\theta} + \ddot{\phi}\frac{\partial}{\partial\phi} + \dot{\theta}^2\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\theta} + \dot{\theta}\dot{\phi}\left(\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\phi} + \nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\theta}\right) + \dot{\phi}^2\left[\nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\phi} = 0\right]$$

$$\nabla_{\frac{\partial}{\partial \phi}} \frac{\partial}{\partial \phi} = \sum_{k=1}^{2} \Gamma_{22}^{k} \frac{\partial}{\partial y_{k}} = 0$$

A geodesic is a curve whose length is the shortest distance between two points. Christoffel symbols can be used to compute geodesics. Let $\sigma(t) = (\theta(t), \phi(t))$ be a geodesic on *List*. Then

 $\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t)=0,$

where

$$\dot{\sigma}(t) = \left(\dot{\theta}\frac{\partial}{\partial\theta} + \dot{\phi}\frac{\partial}{\partial\phi}\right)$$

Now,

$$\nabla_{\dot{\sigma}(t)}\dot{\sigma}(t) = \ddot{\theta}\frac{\partial}{\partial\theta} + \ddot{\phi}\frac{\partial}{\partial\phi} + \dot{\theta}^2\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\theta} + \dot{\theta}\dot{\phi}\left(\nabla_{\frac{\partial}{\partial\theta}}\frac{\partial}{\partial\phi} + \nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\theta}\right) + \dot{\phi}^2\nabla_{\frac{\partial}{\partial\phi}}\frac{\partial}{\partial\phi} = 0$$

Therefore, the equations of geodesics

$$\ddot{\theta} + \frac{1}{tan(\phi/2)} \dot{\theta} \dot{\phi} = 0,$$
$$\ddot{\phi} - sin\phi \dot{\theta}^2 = 0.$$

The **curvature** \mathcal{R} of a Riemannian manifold (M, g) is a correspondence that associates to every pair $X, Y \in \mathfrak{X}(M)$ a mapping $\mathcal{R}(X, Y) : \mathfrak{X}(M) \to \mathfrak{X}(M)$ given by

 $\mathcal{R}(X,Y)Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z, \quad Z \in \mathfrak{X}(\mathsf{M}),$

where ∇ is the Levi-Civita connection of M.

The **curvature** \mathcal{R} of a Riemannian manifold (M, g) is a correspondence that associates to every pair $X, Y \in \mathfrak{X}(M)$ a mapping $\mathcal{R}(X, Y) : \mathfrak{X}(M) \to \mathfrak{X}(M)$ given by

$$\mathcal{R}(X,Y)Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z, \quad Z \in \mathfrak{X}(\mathsf{M}),$$

where ∇ is the Levi-Civita connection of M.

From the Christoffel symbols for the basis $\{\partial_{\theta}, \partial_{\phi}\}, \mathcal{R},$

$$\mathcal{R}(\partial_{\theta}, \partial_{\phi})\partial_{\theta} = \nabla_{\partial_{\theta}} \nabla_{\partial_{\phi}} \partial_{\theta} - \nabla_{\partial_{\phi}} \nabla_{\partial_{\theta}} \partial_{\theta}, \qquad \text{since } [\partial_{\theta}, \partial_{\phi}] = 0, (\text{Note: } \partial_{\theta} = \frac{\partial}{\partial \theta}).$$

The **curvature** \mathcal{R} of a Riemannian manifold (M, g) is a correspondence that associates to every pair $X, Y \in \mathfrak{X}(M)$ a mapping $\mathcal{R}(X, Y) : \mathfrak{X}(M) \to \mathfrak{X}(M)$ given by

$$\Re(X,Y)Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z, \quad Z \in \mathfrak{X}(\mathsf{M}),$$

where ∇ is the Levi-Civita connection of M.

From the Christoffel symbols for the basis $\{\partial_{\theta}, \partial_{\phi}\}, \mathcal{R},$

$$\Re(\partial_{\theta}, \partial_{\phi})\partial_{\theta} = \nabla_{\partial_{\theta}} \nabla_{\partial_{\phi}} \partial_{\theta} - \nabla_{\partial_{\phi}} \nabla_{\partial_{\theta}} \partial_{\theta}, \quad \text{since } [\partial_{\theta}, \partial_{\phi}] = 0, (\text{Note: } \partial_{\theta} = \frac{\partial}{\partial \theta}).$$

This evaluates to,
$$\Re(\partial_{\theta}, \partial_{\phi})\partial_{\theta} = -\cos(\phi/2)\partial_{\theta}$$
$$\Re(\partial_{\theta}, \partial_{\phi})\partial_{\phi} = \frac{1}{4}\partial_{\theta}.$$

The **curvature** \mathcal{R} of a Riemannian manifold (M, g) is a correspondence that associates to every pair $X, Y \in \mathfrak{X}(M)$ a mapping $\mathcal{R}(X, Y) : \mathfrak{X}(M) \to \mathfrak{X}(M)$ given by

$$\Re(X,Y)Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z, \quad Z \in \mathfrak{X}(\mathsf{M}),$$

where ∇ is the Levi-Civita connection of M.

From the Christoffel symbols for the basis $\{\partial_{\theta}, \partial_{\phi}\}, \mathcal{R},$

$$\Re(\partial_{\theta}, \partial_{\phi})\partial_{\theta} = \nabla_{\partial_{\theta}} \nabla_{\partial_{\phi}} \partial_{\theta} - \nabla_{\partial_{\phi}} \nabla_{\partial_{\theta}} \partial_{\theta}, \quad \text{since } [\partial_{\theta}, \partial_{\phi}] = 0, (\text{Note: } \partial_{\theta} = \frac{\partial}{\partial \theta}).$$

This evaluates to,
$$\Re(\partial_{\theta}, \partial_{\phi})\partial_{\theta} = -\cos(\phi/2)\partial_{\theta}$$
$$\Re(\partial_{\theta}, \partial_{\phi})\partial_{\phi} = \frac{1}{4}\partial_{\theta}.$$

In particular, the Gauss curvature is given by,

$$\begin{aligned} K(\theta,\phi) &= \left\langle \mathcal{R}(\partial_{\theta},\partial_{\phi})\partial_{\phi},\partial_{\theta} \right\rangle / \left\langle \partial_{\theta},\partial_{\theta} \right\rangle \\ &= 1/4 \end{aligned}$$

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements : Geometry \checkmark
- Eye as a simple mechanical control system
- Optimal control of the eye
- Conclusions and future directions

Eye as a simple mechanical control system

A **"simple mechanical control system"** (see Smale, 1970) consists the following:

- a configuration manifold Q,
- Riemannian metric *g* on **Q** that defines the kinetic energy function on the tangent bundle of **Q**,
- external forces as functions on the tangent bundle,
- any constraints on the system,
- control forces on the system as covector fields on the configuration manifold.

Eye as a simple mechanical control system

• a configuration manifold Q,

- Riemannian metric *g* on **Q** that defines the kinetic energy function on the tangent bundle of **Q**,
- external forces as functions on the tangent bundle,
- any constraints on the system,
- control forces on the system as covector fields on the configuration manifold.

For the eye movement system, *List* is the configuration manifold.

 $g = 4sin^2(\phi/2)d\theta^2 + d\phi^2$ is the Riemannian metric on **List**.

Let the Lagrangian of the system be

$$\begin{split} L(\theta, \phi, \dot{\theta}, \dot{\phi}) &= \text{Kinetic Energy} - \text{Potential Energy} \\ &= \frac{1}{2} \left\| \dot{\theta} \frac{\partial}{\partial \theta} + \dot{\phi} \frac{\partial}{\partial \phi} \right\|^2 - V(\theta, \phi) \\ &= \frac{1}{2} \left\langle \dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi} \right\rangle - V(\theta, \phi) \end{split}$$

Let the Lagrangian of the system be

 $L(\theta, \phi, \dot{\theta}, \dot{\phi}) =$ Kinetic Energy – Potential Energy

$$= \frac{1}{2} \left\| \dot{\theta} \frac{\partial}{\partial \theta} + \dot{\phi} \frac{\partial}{\partial \phi} \right\|^2 - V(\theta, \phi)$$
$$= \frac{1}{2} \left\langle \dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi} \right\rangle - V(\theta, \phi)$$

Recall that

$$g_{11} = \langle \partial_{\theta}, \partial_{\theta} \rangle = 4sin^{2}(\phi/2),$$

$$g_{12} = \langle \partial_{\theta}, \partial_{\phi} \rangle = 0,$$

$$g_{22} = \langle \partial_{\phi}, \partial_{\phi} \rangle = 1.$$

Let the Lagrangian of the system be

 $L(\theta, \phi, \dot{\theta}, \dot{\phi}) =$ Kinetic Energy – Potential Energy

$$= \frac{1}{2} \left\| \dot{\theta} \frac{\partial}{\partial \theta} + \dot{\phi} \frac{\partial}{\partial \phi} \right\|^2 - V(\theta, \phi)$$
$$= \frac{1}{2} \left\langle \dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi} \right\rangle - V(\theta, \phi)$$

$$L(\theta,\phi,\dot{\theta},\dot{\phi}) = 2\dot{\theta}^2 \sin^2(\phi/2) + \frac{1}{2}\dot{\phi}^2 - V(\theta,\phi)$$

Let the Lagrangian of the system be

* * *

 $L(\theta, \phi, \dot{\theta}, \dot{\phi}) =$ Kinetic Energy – Potential Energy

$$= \frac{1}{2} \left\| \dot{\theta} \frac{\partial}{\partial \theta} + \dot{\phi} \frac{\partial}{\partial \phi} \right\|^2 - V(\theta, \phi)$$
$$= \frac{1}{2} \left\langle \dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi} \right\rangle - V(\theta, \phi)$$

$$L(\theta,\phi,\dot{\theta},\dot{\phi}) = 2\dot{\theta}^2 \sin^2(\phi/2) + \frac{1}{2}\dot{\phi}^2 - V(\theta,\phi)$$

Euler-Lagrange equations:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = F_i, \quad i = 1, \dots, n.$$

Let the Lagrangian of the system be

 $L(\theta, \phi, \dot{\theta}, \dot{\phi}) =$ Kinetic Energy – Potential Energy

$$= \frac{1}{2} \left\| \dot{\theta} \frac{\partial}{\partial \theta} + \dot{\phi} \frac{\partial}{\partial \phi} \right\|^2 - V(\theta, \phi)$$
$$= \frac{1}{2} \left\langle \dot{\theta} \frac{\partial}{\partial \theta}, \dot{\phi} \frac{\partial}{\partial \phi} \right\rangle - V(\theta, \phi)$$

$$L(\theta,\phi,\dot{\theta},\dot{\phi}) = 2\dot{\theta}^2 \sin^2(\phi/2) + \frac{1}{2}\dot{\phi}^2 - V(\theta,\phi)$$

Euler-Lagrange equations:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = F_i, \quad i = 1, \dots, n.$$

Therefore the equations of motion:

$$\ddot{\theta} + \dot{\theta}\dot{\phi}\cot(\phi/2) + \frac{1}{4}\csc^2(\phi/2)\frac{\partial}{\partial\theta}V = \frac{1}{4}\csc^2(\phi/2)\tau_{\theta}$$
$$\ddot{\phi} - \dot{\theta}^2\sin(\phi) + \frac{\partial}{\partial\phi}V = \tau_{\phi}.$$

CBCIS - p. 34/4

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements : Geometry \checkmark
- Eye as a simple mechanical control system \checkmark
- Optimal control of the eye
- Conclusions and future directions

Case I: Generalized torques, τ_{θ} , τ_{ϕ}

Let $V(\theta, \phi) = sin^2(\phi/2)$.

Equations of motion:

$$\ddot{\theta} + \dot{\theta}\dot{\phi}\cot(\phi/2) = \frac{1}{4}\csc^2(\phi/2)\tau_{\theta}$$
$$\ddot{\phi} - \dot{\theta}^2\sin(\phi) + \frac{1}{2}\sin(\phi) = \tau_{\phi}.$$

Case I: Generalized torques, τ_{θ} , τ_{ϕ}

Let $V(\theta, \phi) = sin^2(\phi/2)$.

Equations of motion:

$$\ddot{\theta} + \dot{\theta}\dot{\phi}\cot(\phi/2) = \frac{1}{4}csc^2(\phi/2)\tau_{\theta}$$
$$\ddot{\phi} - \dot{\theta}^2\sin(\phi) + \frac{1}{2}\sin(\phi) = \tau_{\phi}.$$

Let $[z_1, z_2, z_3, z_4]' = [\theta, \dot{\theta}, \phi, \dot{\phi}]'$, then

$$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} z_2 \\ -z_2 z_4 cot(z_3/2) \\ z_4 \\ z_2^2 sin(z_3) - \frac{1}{2} sin(z_3) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{4} csc^2(z_3/2) \\ 0 \\ 0 \end{bmatrix} \tau_{\theta} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \tau_{\phi}$$

We wish to control the state $(\theta, \dot{\theta}, \phi, \dot{\phi})$ from $(\theta_0, 0, \phi_0, 0)$ to $(\theta_1, 0, \phi_1, 0)$ in *T* unit of time, while minimizing the control energy,

$$\int_0^T \left[(\tau_\theta(t))^2 + (\tau_\phi(t))^2 \right] \mathrm{d}t.$$

We wish to control the state $(\theta, \dot{\theta}, \phi, \dot{\phi})$ from $(\theta_0, 0, \phi_0, 0)$ to $(\theta_1, 0, \phi_1, 0)$ in *T* unit of time, while minimizing the control energy,

$$\int_0^T \left[(\tau_\theta(t))^2 + (\tau_\phi(t))^2 \right] \mathrm{d}t.$$

Lagrangian:

$$L=\frac{1}{2}\left((\tau_\theta(t))^2+(\tau_\phi(t))^2\right),$$

and denote the costate by λ . Construct the Hamiltonian

$$\begin{aligned} \mathcal{H}(z,\lambda) &= \lambda.\dot{z} - L(z) \\ &= \lambda_1 z_2 - \lambda_2 z_2 z_4 \cot(z_3/2) + \lambda_3 z_4 + \lambda_4 z_2^2 \sin(z_3) - \frac{1}{2} \lambda_4 \sin(z_3) \\ &\frac{\lambda_2}{4 \sin^2(z_3/2)} \tau_{\theta} + c \lambda_4 \tau_{\phi} + \frac{1}{2} \left((\tau_{\theta}(t))^2 + (\tau_{\phi}(t))^2 \right) \end{aligned}$$

Hamilton's principle:

$$\dot{q}^i = \frac{\partial \mathcal{H}}{\partial p_i}, \qquad \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q^i},$$

where $p_i = \frac{\partial L}{\partial \dot{q}^i}$, $i = 1, \dots, n$.

Hamilton's principle:

$$\dot{q}^i = \frac{\partial \mathcal{H}}{\partial p_i}, \qquad \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q^i},$$

where
$$p_i = \frac{\partial L}{\partial \dot{q}^i}$$
, $i = 1, \dots, n$.

Hamiltonian system:

$$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} z_1 \\ -z_2 z_4 \cot(z_3/2) + 1/4 \sin^2(z_3/2) \tau_{\theta}^* \\ z_4 \\ z_2^2 \sin(z_3) - \frac{1}{2} \sin(z_3) + \tau_{\phi}^* \\ 0 \\ -\lambda_1 + \lambda_2 z_4 \cot(z_3/2) - 2\lambda_4 z_2 \sin(z_3) \\ -\frac{1}{2} \lambda_2 z_2 z_4 \csc^2(z_3/2) - \lambda_4 z_2^2 \cos z_3 + \frac{1}{2} \lambda_4 \cos(z_3) + \frac{1}{2} \lambda_2 \cot(z_3) \csc^2(z_3) \tau_{\theta}^* \\ \lambda_2 z_2 \cot(z_3/2) - \lambda_3 \end{bmatrix}$$

Hamilton's principle:

$$\dot{q}^i = \frac{\partial \mathcal{H}}{\partial p_i}, \qquad \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q^i}$$

where $p_i = \frac{\partial L}{\partial \dot{q}^i}$, $i = 1, \dots, n$.

According to Pontryagin Maximum Principle (PMP), we can obtain:

$$\begin{aligned} \tau_{\theta} &= -\frac{\lambda_2}{4\sin^2(z_3/2)}, \\ \tau_{\phi} &= -\lambda_4. \end{aligned}$$

Hamilton's principle:

$$\dot{q}^i = \frac{\partial \mathcal{H}}{\partial p_i}, \qquad \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q^i}$$

where $p_i = \frac{\partial L}{\partial \dot{q}^i}$, $i = 1, \dots, n$.

According to Pontryagin Maximum Principle (PMP), we can obtain:

$$\begin{aligned} \tau_{\theta} &= -\frac{\lambda_2}{4\sin^2(z_3/2)}, \\ \tau_{\phi} &= -\lambda_4. \end{aligned}$$

Thus the system becomes

$$\begin{bmatrix} \dot{z}_{1} \\ \dot{z}_{2} \\ \dot{z}_{3} \\ \dot{z}_{4} \\ \dot{\lambda}_{1} \\ \dot{\lambda}_{2} \\ \dot{\lambda}_{3} \\ \dot{\lambda}_{4} \end{bmatrix} = \begin{bmatrix} z_{2} \\ -z_{2}z_{4}\cot(z_{3}/2) - \frac{\lambda_{2}}{16}\csc^{4}(z_{3}/2) \\ z_{4} \\ z_{2}^{2}\sin(z_{3}) - \frac{1}{2}\sin(z_{3}) - \lambda_{4} \\ 0 \\ -\lambda_{1} + \lambda_{2}z_{4}\cot(z_{3}/2) - 2\lambda_{4}z_{2}\sin(z_{3}) \\ (-\frac{1}{2}\lambda_{2}z_{2}z_{4}\csc^{2}(z_{3}/2) - 2\lambda_{4}z_{2}^{2}\cos(z_{3}) + \frac{1}{2}\lambda_{4}\cos(z_{3}/2) - \frac{\lambda_{2}^{2}}{16}\csc^{4}(z_{3}/2)\cot(z_{3}/2)) \\ \lambda_{2}z_{2}\cot(z_{3}/2) - \lambda_{3} \end{bmatrix}$$

 $\dot{ heta}, \dot{\phi}$ and $au_{ heta}, au_{\phi}$

Case II: Simplified muscles

Each musculotendon consist of a linear spring with spring constant k_i , a damper with damping constant b_i , and an active force F_i .

Projecting the torques to *List*

 $\theta \longrightarrow \theta + \delta \theta, \phi \longrightarrow \phi.$

Virtual work by the spring: $k_i(l_i - l_{i_0})\delta l = k_i(l_i - l_{i_0})\frac{\partial l_i}{\partial \theta}d\theta$.

Case II: Simplified muscles

Each musculotendon consist of a linear spring with spring constant k_i , a damper with damping constant b_i , and an active force F_i .

Projecting the torques to *List*

 $\theta \longrightarrow \theta + \delta \theta, \phi \longrightarrow \phi.$

Virtual work by the spring: $k_i(l_i - l_{i_0})\delta l = k_i(l_i - l_{i_0})\frac{\partial l_i}{\partial \theta}d\theta$.

$$\tau_{\theta} = k_i (l_i - l_{i_0}) \frac{\partial l_i}{\partial \theta}$$

Case II: Simplified muscles

Each musculotendon consist of a linear spring with spring constant k_i , a damper with damping constant b_i , and an active force F_i .

Projecting the torques to *List*

 $\theta \longrightarrow \theta + \delta \theta, \phi \longrightarrow \phi.$

Virtual work by the spring: $k_i(l_i - l_{i_0})\delta l = k_i(l_i - l_{i_0})\frac{\partial l_i}{\partial \theta}d\theta$.

$$\tau_{\theta} = k_i (l_i - l_{i_0}) \frac{\partial l_i}{\partial \theta}$$

Also note, $\dot{l}_i = \dot{\theta} \frac{\partial l_i}{\partial \theta} + \dot{\phi} \frac{\partial l_i}{\partial \phi}$.

Case II: Simplified muscles

Each musculotendon consist of a linear spring with spring constant k_i , a damper with damping constant b_i , and an active force F_i .

Projecting the torques to *List*

 $\theta \longrightarrow \theta + \delta \theta, \phi \longrightarrow \phi.$

Virtual work by the spring: $k_i(l_i - l_{i_0})\delta l = k_i(l_i - l_{i_0})\frac{\partial l_i}{\partial \theta}d\theta$.

$$\tau_{\theta} = k_i (l_i - l_{i_0}) \frac{\partial l_i}{\partial \theta}$$

Also note, $\dot{l}_i = \dot{\theta} \frac{\partial l_i}{\partial \theta} + \dot{\phi} \frac{\partial l_i}{\partial \phi}$.

Therefore for the damper: $F_{damp} = b_i \dot{l}_i = b_i (\dot{\theta} \frac{\partial l_i}{\partial \theta} + \dot{\phi} \frac{\partial l_i}{\partial \phi})$

Case II: Simplified muscles

Each musculotendon consist of a linear spring with spring constant k_i , a damper with damping constant b_i , and an active force F_i .

Projecting the torques to *List*

 $\theta \longrightarrow \theta + \delta \theta, \phi \longrightarrow \phi.$

Virtual work by the spring: $k_i(l_i - l_{i_0})\delta l = k_i(l_i - l_{i_0})\frac{\partial l_i}{\partial \theta}d\theta$.

$$\tau_{\theta} = k_i (l_i - l_{i_0}) \frac{\partial l_i}{\partial \theta}$$

Also note, $\dot{l}_i = \dot{\theta} \frac{\partial l_i}{\partial \theta} + \dot{\phi} \frac{\partial l_i}{\partial \phi}$.

Therefore for the damper: $F_{damp} = b_i \dot{l}_i = b_i (\dot{\theta} \frac{\partial l_i}{\partial \theta} + \dot{\phi} \frac{\partial l_i}{\partial \phi})$

Then the torque with the active force F_i with $C_i = k_i(l_i - l_{i_0}) + b_i(\dot{\theta}\frac{\partial l_i}{\partial \theta} + \dot{\phi}\frac{\partial l_i}{\partial \phi})$:

$$\tau_{\theta} = \sum_{i=1}^{6} \left[F_i + C_i \right] \frac{\partial l_i}{\partial \theta} \qquad \qquad \tau_{\phi} = \sum_{i=1}^{6} \left[F_i + C_i \right] \frac{\partial l_i}{\partial \phi}$$

The optimal control problem becomes one of minimizing

$$\int_0^T \sum_{i=1}^6 F_i^2 \mathrm{d}t.$$

* * *

The optimal control problem becomes one of minimizing

$$\int_0^T \sum_{i=1}^6 F_i^2 \mathrm{d}t.$$

According to PMP as before, we can obtain

$$F_i^* = -\frac{\lambda_2}{4sin^2(z_3/2)}\frac{\partial l_i}{\partial \theta} - \lambda_4 \frac{\partial l_i}{\partial \phi}$$

The optimal control problem becomes one of minimizing

$$\int_0^T \sum_{i=1}^6 F_i^2 \mathrm{d}t.$$

According to PMP as before, we can obtain

$$F_i^* = -\frac{\lambda_2}{4sin^2(z_3/2)}\frac{\partial l_i}{\partial \theta} - \lambda_4 \frac{\partial l_i}{\partial \phi}$$

Optimal path and muscle forces, from $(\pi/6, \pi/6)$ to $(\pi/10, \pi/10)$

Case III: Hill-type muscles

Hill-type musculotendon

Case III: Hill-type muscles

$$\tau_{\theta} = \sum_{i=1}^{6} F_{\text{total}}^{i} \frac{\partial l_{i}}{\partial \theta}$$
$$\tau_{\phi} = \sum_{i=1}^{6} F_{\text{total}}^{i} \frac{\partial l_{i}}{\partial \phi}$$

where

$$F_{\text{total}}^i = F_t^i - (F_{act}^i + F_{pe}^i + B_m^i \dot{l}_i).$$

Case III: Hill-type muscles

$$\tau_{\theta} = \sum_{i=1}^{6} F_{\text{total}}^{i} \frac{\partial l_{i}}{\partial \theta}$$
$$\tau_{\phi} = \sum_{i=1}^{6} F_{\text{total}}^{i} \frac{\partial l_{i}}{\partial \phi}$$

where

$$F_{\text{total}}^i = F_t^i - (F_{act}^i + F_{pe}^i + B_m^i \dot{l}_i).$$

The problem beomes one of minimizing

$$\int_0^T \sum_{i=1}^6 \left[F_{act}^i(t) \right]^2 \mathrm{d}t.$$

Optimal path from $(\pi/5, \pi/6)$ to $(\pi/10, \pi/10)$

Superior and inferior rectus muscle activities

Lengths of (Eye) Rotations

* * *

$$\ell(\sigma) = \int_{a}^{b} \left\| \dot{\theta} \frac{\partial}{\partial \theta} + \dot{\phi} \frac{\partial}{\partial \phi} \right\| dt$$
$$= \int_{a}^{b} \sqrt{\dot{\theta}^{2} g_{11} + 2\dot{\theta} \dot{\phi} g_{12} + \dot{\phi}^{2} g_{22}} dt$$
$$= \int_{a}^{b} \sqrt{4 \sin^{2}(\phi/2)\dot{\theta}^{2} + \dot{\phi}^{2}} dt.$$

Lengths of (Eye) Rotations

* * *

$$\ell(\sigma) = \int_{a}^{b} \left\| \dot{\theta} \frac{\partial}{\partial \theta} + \dot{\phi} \frac{\partial}{\partial \phi} \right\| dt$$
$$= \int_{a}^{b} \sqrt{\dot{\theta}^{2} g_{11} + 2\dot{\theta} \dot{\phi} g_{12} + \dot{\phi}^{2} g_{22}} dt$$
$$= \int_{a}^{b} \sqrt{4 \sin^{2}(\phi/2)\dot{\theta}^{2} + \dot{\phi}^{2}} dt.$$

From	То	distance (radians)		
(θ,ϕ)	(θ,ϕ)	<i>SO</i> (3)	Geodesic	Min. energy
			on List	on List
$\left(\frac{\pi}{4},\frac{\pi}{6}\right)$	$\left(\frac{\pi}{8},\frac{\pi}{8}\right)$	0.219	0.222	0.324
$(\frac{\pi}{4},\frac{\pi}{4})$	$\left(\frac{\pi}{8},\frac{\pi}{6}\right)$	0.359	0.368	0.368
$\left(\frac{\pi}{6},\frac{\pi}{10}\right)$	$(\frac{\pi}{8},\frac{\pi}{4})$	0.476	0.480	0.482

Outline of the talk

- Anatomy of the eye \checkmark
- Planer eye movements \checkmark
- Three-dimensional eye movements : Geometry \checkmark
- Eye as a simple mechanical control system \checkmark
- Optimal control of the eye \checkmark
- Conclusions and future directions

Summary:

• Learning curves for planer saccadic eye movements.

Summary:

- Learning curves for planer saccadic eye movements.
- Geometry of *List*, the Listing rotations. As far as we are aware, this is the first study of its kind.

Summary:

- Learning curves for planer saccadic eye movements.
- Geometry of *List*, the Listing rotations. As far as we are aware, this is the first study of its kind.
- A dynamic model for the three-dimensional eye movements. Eye treated as a "simple mechanical control system".

- Learning curves for planer saccadic eye movements.
- Geometry of *List*, the Listing rotations. As far as we are aware, this is the first study of its kind.
- A dynamic model for the three-dimensional eye movements. Eye treated as a "simple mechanical control system".
- Optimal control stratergies for three-dimensional eye movements.

Future directions:

For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques τ_θ, τ_φ.

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques τ_θ, τ_φ.
- Comparison with actual eye movement recordings. Three-dimensional case is not very well looked at.

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques τ_θ, τ_φ.
- Comparison with actual eye movement recordings. Three-dimensional case is not very well looked at.
- Study of VOR with head movements and the smooth pursuit movement, to understand the tracking problem.

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques τ_θ, τ_φ.
- Comparison with actual eye movement recordings. Three-dimensional case is not very well looked at.
- Study of VOR with head movements and the smooth pursuit movement, to understand the tracking problem.
- Many other types of human movements can be studied with a similar geometric setting and as "simple mechanical control systems".

- For fast eye movments (saccades), a better approach would be minimizing the time instead of the control. But higher dimensionality of the control (six muscle activities), makes it a harder problem. Simpler problem would be to solve the minimum-time problem with the generalized torques τ_θ, τ_φ.
- Comparison with actual eye movement recordings. Three-dimensional case is not very well looked at.
- Study of VOR with head movements and the smooth pursuit movement, to understand the tracking problem.
- Many other types of human movements can be studied with a similar geometric setting and as "simple mechanical control systems".