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Study of human eye movements and control has been a topic among neu-

rologists, physiologists, and engineers for a long time. In spite of several notable

studies of three dimensional eye movements, there has not been a rigorous treat-

ment of the topic in the framework of modern control theory and geometric

mechanics. This thesis sheds a new light on this topic with a methodical treatment

of mechanical control systems.

Attached by three pairs of muscles, the eye is treated as a rigid sphere. There

is physiological evidence to support the notion that all eye movements obey List-

ing’s law, which states that the eye orientations form a subset consisting of rotation

matrices of which the axes are orthogonal to the primary gaze direction. Thus,

the dynamics of the eye may be treated as a mechanical system with holonomic



constraints, which in essence limit the configuration space to be a two dimensional

submanifold of SO(3). First we analyze the geometry of this restricted configu-

ration space (referred to as the Listing space). As far as we are aware, this study

is the first to explicitly describe the Riemannian geometry of the submanifold of

Listing rotations.

Next we develop the descriptions of Lagrangian and Hamiltonian mechan-

ics of the eye movement system in the presence of external inputs. Optimal

control problems associated with the eye movement subjected to the Listing con-

straints will be formulated using the Maximum principle and solved numerically.

The minimal distances of eye rotations with and without Listing constraints on

geodesic and optimal paths are also compared.
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Chapter 1

Introduction

If we knew what it was we were doing, it

would not be called research, would it?

— Albert Einstein

1.1 Motivation

Biological systems are becoming more appealing to approaches that are commonly

used in systems theory and suggest new design principles that may have important

practical applications in man-made systems. The principles of control theory are

central to many of the key questions in biological engineering.

Modeling the eye plant in order to generate various eye movements, has

been the topic among neurologists, physiologists, and engineers for a long time.

Since as early as 1845 (e.g. work of Listing, Donders, Helmholtz etc.), physiolo-

gists and engineers have created models in order to help understand various eye

movements (see Figure 1.1) also see [Robinson 1964]. The precise coordination

in muscles when the eye is rotated by the the action of 6 extra ocular muscles

(EOMs), has been an important topic in treating various ocular disorders. The

eyes rotate with three degrees of freedom, making it an interesting yet simpler

problem compared to other complex human movement systems.

Previous studies which used modeling as a means of understanding the

control of three-dimensional eye movement have adopted two main approaches.

One focusing on the details of the properties of the EOMs (biomechanically “cor-

rect”) [Martin & Schovanec 1998],[Miller & Robinson 1984] and the other focusing
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Figure 1.1: Knapp’s 1861 ball and string opthalmotrop: An early mechanical model
reflecting only extraocular geometry, ignoring contractile and elastic properties
and coordination of inputs

on control mechanisms for three-dimensional eye movement using over simpli-

fied linear models with all the details of the above EOM properties ignored but

focusing on the information processing and control aspects [Raphan 1998],[Quaia

& Optican 1998].

In spite of several notable studies of three dimensional eye movements,

there has not been a rigorous treatment of the topic in the framework of modern

control theory and geometric mechanics. Assuming eye to be a rigid sphere, the

problem can be treated as a mechanical control system which is an important

and challenging research area that falls between the study of classical mechanics

and modern nonlinear control. The geometric structure of mechanical systems, in

general, gives way to stronger control algorithms than those obtained for generic

nonlinear systems [Murray 1997].

The area of biomechanical modeling can take advantage of richly developed

disciplines of mechanics and control theory. In the area of mechanics, unlike the

classic approach by [Goldstein 1980], recent works by [Smale 1970a], [Abraham

& Marsden 1987], [Krishnaprasad, Yang & Dayawansa 1991],[Marsden & Ratiu

1999], [Arnol’d 1989] and [Bullo & Lewis 2004] develop a geometric theory with

Lagrangian and Hamiltonian viewpoints. Lagrangian mechanics is based on

variational principles. Many important ideas in mechanics have a variational
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basis [Goldstein 1980]. The Hamiltonian mechanics is directly based on the energy

concept. As we see in Section 4.3, these streams are equivalent.

On the other hand control theory consists of a large as well as elegant

collection of literature and specially beginning late 1970s, the works of [Brocket

1978], [Isidori 1997], and [Sussmann 1987], etc., have introduced geometric tools

to nonlinear control problems. The adaptation of methods of nonlinear control

theory to mechanical systems as well as extending the methods of geometric

mechanics to systems with external inputs has been discussed in [Abraham &

Marsden 1987], [Marsden & Ratiu 1999], [Lewis 1995] and [Bullo & Lewis 2004].

1.2 Contributions and Overview of the Thesis

The work of this dissertation may be viewed as an attempt to study and model the

eye movement system as a “simple 1 mechanical control system” [Smale 1970a, Smale

1970b, Lewis & Murray 1997]. This also falls under the category of biomechanical

models.

Attached by three pairs of muscles, the eye is treated as a rigid sphere.

There is physiological evidence to support the notion that all eye movements obey

Listing’s law, which states that the eye orientations form a subset consisting of

rotation matrices of which the axes are orthogonal to the normal (primary) gaze

direction. Thus, the the eye is treated as a mechanical system with holonomic

constraints, which in essence limit the configuration manifold Q to be a two

dimensional submanifold of SO(3). This configuration manifold Q we denote as

ListListList.

First we discuss in detail the geometry of ListListList. To the best of our knowl-

edge, this study is the first to explicitly describe the Riemannian geometry of the

submanifold of Listing rotations. Then the system is studied as a forced simple me-

chanical system [Bullo & Lewis 2004] with the Lagrangian formed by kinetic energy

(determined by the associated Riemannian metric) minus potential energy.

Next we investigate the problem of minimizing the energy of the control.

Here we follow the work by [Sussman & Willems 1997] towards the celebrated

Pontryagin maximum principle in optimal control theory.

A breif outline of the content chapter-by-chapter is as follows:

1The word simple does not mean easy, but rather because they are not completely general. Most
of the systems one encounters in applications are in fact simple mechanical systems.
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Chapter 2: This chapter introduces the reader to the anatomy and structure of the

human eye influencing its motion. A brief review of different modeling and

control attempts is given. Chapter ends with the introduction of the famous

Listing’s law.

Chapter 3: Here we review the necessary mathematical preliminaries from differen-

tial geometry, Riemannian geometry and quaternions representing rotations.

Chapter 4: The aim of this chapter is to discuss the geometric treatment of mechan-

ical control systems. The Lagrangian and Hamiltonian frameworks are the

two main points of view. We also state the results from optimal control

theory.

Chapter 5: Before the discussion of more involved topic of three-dimensional eye

movements, this chapter introduces the long discussed topic of planer eye

movements. A simple model with a single muscle pair to generate horizontal

saccadic eye movements is discussed and a scheme to obtain the parameters

of the neural control signal is proposed.

Chapter 6: In this chapter we present one of the main results of the dissertation.

Geometry of the configuration space ListListList is discussed here.

Chapter 7: Here we develop some optimal control methods on ListListList.

Chapter 8: This chapter presents some conclusions, a summary and some directions

for future research.

Appendix A: In this appendix, some useful results in quaternion calculations are

given.

Appendix B: This is an introduction to a muscle and a tendon complex known as

“Hill-type” model. We make use of this model, in the eye movement system,

as extraocular muscles.
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Chapter 2

Anatomy of the Eye

Our nature consists in movement; abso-

lute rest is death.

— Blaise Pascal (1623-1662)

Understanding how our movements are planned, controlled, and executed

is a daunting task. The understanding of movements has to be based upon an

accurate description of the kinematics and dynamics of the executed movements.

Of all types of movements, eye movements are arguably the most appealing ones

to scientific investigation. The eye is an object with negligible inertia, and only

three pairs of extraocular muscles (EOMs) control its orientation and movement. By

comparison, 24 muscles and tendons have to be taken into consideration for a 2-

dimensional simplification of human walking! This large number of limb muscles

is necessary for two reasons. One reason is the degrees of freedom (DOF) of

limb movements: while the eye essentially displays a ball and socket behavior, and

is thus restricted to only 3 DOF, leg- or arm-movements have significantly more

DOFs. The other reason for the abundance of muscles in legs and arms is the inertia

of limbs. While the inertia of the human eyeball is a negligible quantity [Minor,

Lasker, Backous & Hullar 1999], considerable forces are necessary to accelerate or

stop a limb.



6

Figure 2.1: Anatomy of the eye - extraocular muscles contributing to the movement
are underlined. (courtesy of Yale University School of Medicine)

2.1 Anatomy of the extraocular plant

The structures of the human eye most relevant for this study are the ones influ-

encing or contributing to its motion. The movement of the eye is determined by

the coordinated activity of the six extraocular muscles (see Figure 2.1), as well as

by the mechanical properties of the tissue connecting these structures to the orbit.

The individual movements of a single eye are known as ductions. For

example, infraduction (looking down), abduction (looking laterally or outward),

adduction (looking medially or inward toward the nose). When both eyes function

together the movements are binocular and termed versions of above. Each eye

is moved by six extraocular muscles: medial and lateral rectus, superior and

inferior rectus, and inferior and superior oblique muscles as shown underlined

in Figure 2.1. As a first approximation they may be thought of as functioning in

reciprocal pairs. For planer lateral movements of an eye, the lateral rectus contracts

and the medial rectus relaxes; for planer upward movements the superior rectus

contracts and inferior rectus relaxes. Diagonal and torsional movements of an
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individual eye are produced by particular patterns of innervation and inhibition

involving all the muscles. The main muscle producing a individual movement

is known as the agonist. The muscle which is simultaneously inhibited is the

antagonist. For example, rightward movement of the eye would result when the

right lateral rectus is contracting (agonist) and the right medial rectus relaxing

(antagonist). Unlike most other striated muscles which are electrically silent at

rest, the extraocular muscles maintain a constant state of activity to hold the eyes in

position in the orbit. The firing rate of the motorneurons supplying the extraocular

musculature is controlled by higher brain and brain stem regions, the supranuclear

ocular motor control systems.

One of the unknown factors is the exact path that the extraocular muscles

take in the orbit. Recent work based on high resolution MRI scans and on trans-

sections of the extraocular plant has revealed that the muscles do not run freely

in the orbital globe. Instead, they are connected by collagen tissue and smooth

muscles, sometimes referred to as muscle pullies, to the inner wall of the orbita

[Demer, Miller, Poukens, Vinters & Glasgow 1995].

These attachments of the extraocular muscles have two important impli-

cations. First, they determine the pulling directions of the EOMs. Second, the

pulling directions also play an important role for the control of eye movements.

The implications of these muscle pullies for the control of eye movements are still

unclear. One school of thought claims that these pullies allow the central nervous

system (CNS) to focus on the control of the gaze direction, i.e., the line of sight, and

leave the adjustment of the eye orientation (or the torsion about the gaze direction)

to the mechanics of the eye plant [Raphan 1998]. In fact, recordings of the activity

of single neurons in the superior colliculus, a midbrain structure that is very im-

portant for the generation of fast eye movements, have shown that at that stage

the signal that controls the eye movement is represented only in 2-dimensions

[van Opstal, Hepp, Hess, Straumann & Henn 1991]. The other school of thought

insists that the eye movement is controlled in all three directions, taking into con-

sideration the effects of the EOMs [Tweed, Haslwanter & Fetter 1998]. In their

opinion the system accurately controls and executes movements of the eyes, also

accounting for the torsion. While the first model requires 2 degrees of freedom

for eye movement control, the second model implies a fully 3-dimensional control

structure on SO(3). We will mention a word or two on this two schools of thinking



8

again in section 2.3 when we discuss about the Listing’s law and it will become

clearer afterwards.

2.2 Movements of the eye

There are four separate subsystems of supranuclear ocular motor control, each

with different neurophysiologic characteristics and largely separate neuroanatomic

pathways. The four subsystems are: (1) Saccadic or fast eye movement sub-

systems, (2) Pursuit or tracking subsystem, (3)Vestibular Ocular Reflex (VOR)

subsystem, and (4) Vergence subsystem.

The two main tasks of the eye are reflected in its movements: the eye has to

be able to generate a stable image on the retina, and to shift the point of interest

quickly to a new target. In primates, the fovea (the central part of retina where

the optimal visual resolution is achieved) has an effective diameter of less than a

degree. Therefore, whenever the primate visual system decides to further explore

the details of a peripheral visual target, the current gaze line must be precisely

redirected at the object. Such fast eye movements necessary for target shifts are

called saccades. Saccades are only used to change the gaze direction, and no visual

information is obtained during the saccadic gaze shift. The sudden appearance

of a peripheral object or an eccentric sound may evoke a reflex saccade in the

direction of the stimulus, typically with a latency of 200 to 250 msec. In humans

they reach velocities ranging from 300/s to 7000/s, for movements from 0.5 degrees

to 40 degrees in amplitude, and are executed in a very stereotyped way. Saccades

are ballistic (i.e., happens under open-loop control, and cannot be altered once

the motion is initiated). The control signal is the retinal position error. Apart

from astonishingly fast, often lasting little more than 20 milliseconds, they also

happen to be the single most frequent movement we make, much commoner than

heartbeats; we make two or three saccades every second of our waking lives.

While saccades that are executed with the head stationary are well under-

stood, combined eye-head movements have only recently become the focus of

research. Once the eye has reached its target, the CNS has to ensure that the visual

information is clear and does not get blurred by voluntary or involuntary head

movements. This is achieved by the pursuit eye movements and vestibulo-ocular

reflex (VOR). The major stimulus for a pursuit eye movement is a slow movement
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of a fixated target. This evokes a following eye movement after latency of 125

msec. The maximum pursuit velocities can go upto 500/s. The input signal is

the retinal error (“slip”) velocity. It may be interesting to note here that it is not

possible to generate smooth pursuit eye movements without an actual smoothly

moving target. Attempts to voluntarily move the eyes smoothly without actual

target motion result in a series of small saccades, so called “cog-wheel” pursuit.

The VOR movement compensates for the movement of the head, thereby

ensuring a clear image of the fixation object on the retina. The latency can be up to

100 msec and the peak eye velocity can be in the order of 3000/s. VOR takes place as

a smooth movement under continous feedback control with possible interruptions

by intermittent saccades which recenter the eyes toward a midposition in the

orbit. This repetitive pattern of slow and fast eye movements is an example of

one type of nystagmus. Nystagmus is an ocular oscillation with repetitive to and

from movements, usually composed of a slow component and a fast or saccadic

component.

The stimuli for the fourth type, the vergence eye movements are target

displacement or motion along the gaze axis (toward or away from the observer).

The latency for vergence eye movements is approximately 160 msec; maximum

velocities are in the range of 200/s, and the system is unique in being able to

generate uniocular eye movements. For example, if a target were placed exactly

in front of the right eye and slowly brought closer to the observer, the right eye

would remain stationary but the left eye would converge.

2.3 Listing’s law

Eye Positions. In what follows, a 3 dimensional eye position is parametrized by

the virtual rotation that brings the eye from the primary position (usually taken as

the straight ahead gaze direction) to the current position. A secondary eye position

is obtained by a rotation from the primary position about either the horizontal

or vertical axis of the primary coordinate system. A tertiary position is any posi-

tion that obeys Listing’s law (see below) and is not a primary or secondary position.

Donder’s law. While looking at a target, the position of the target determines the

gaze direction, but does not specify the orientation (or the amount of “torsion”-as
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often referred in ocular physiology- about the gaze line). Donders in 1848 discov-

ered that this amount of torsion is not arbitrary, but uniquely determined by the

gaze direction and independent of the trajectory followed to get to that position.

In other words, ocular torsion is fully specified by the horizontal and vertical com-

ponents of the gaze direction, i.e., a two-dimensional subspace. This phenomena

is known as Donder’s law . The precise geometry of this subspace however, is not

specified by Donder’s law.

Figure 2.2: Listing’s plane

Listing’s law. By following a suggestion by the German physicist Listing, Helmholtz

further investigated this idea and was able to specify this amount. He proposed

that the Donder’s surface is in fact a plane. This is known as the Listing’s plane

and the phenomena is called the Listing’s law. Stated loosely, Listing’s law says

all eye positions can be reached from the so called primary position by picking up

axes of rotations scattered along a plane. But let’s state it in a more ‘mathematical

language’.
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Listing’s law: All rotation matrices employed to direct the gaze vector

from the primary position to a tertiary position have their axes of

rotations orthogonal to the primary gaze direction. This in turn resolves

the ambiguity of specifying the orientation (torsion) while looking at

a target by restricting the natural configuration space SO(3) of the eye

movements to a submanifold of SO(3).

How the eye obeys Listing’s law is still not clear. The debate between the

two schools of thought mentioned in Section 2.1 boils down to the question of

whether the structure of the eye plant with pullies in fact satisfies the Listing’s law

or is it the CNS which generates the necessary motor commands to move the eye

following the Listing’s criterion. In this thesis we align with the later since their is

not enough evidence in the structure of the eye to support the former though there

have been arguments that the newly discovered pullies may play a role [Demer,

Oh & Poukens 2000], [Raphan 1998], and [Quaia & Optican 1998].
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Chapter 3

Mathematical Preliminaries

Let no one enter who does not know ge-

ometry.

— Inscription on Plato’s door

The treatment of eye movement problem in this thesis is geometric. There-

fore, to collect the necessary mathematical tools, a list of definitions and theorems

from differential geometry is given first in this chapter. From the general concepts

of differential geometry the focus quickly moves, in Section 3.2, to Riemannian ge-

ometry (Riemannian metrics, Riemannian connections, geodesics and curvature).

For a thorough treatment of the basic differential and Riemannian geometric ideas,

one should refer the texts [Boothby 1986], [do Carmo 1993] and [Warner 1989].

In Section 3.3, a discussion on Quaternions to represent rotations in R3 is given.

Again, one should refer to texts by [Kuipers 1998] and [Conway & Smith 2003] for

a detailed account.

3.1 Differential Geometry

The basic object in differential geometry is the manifold, which generally speaking,

is a topological space resembling to an open subset of Euclidean space locally. A

differentiable manifold is a manifold M for which this resemblance is sharp enough

to allow partial differentiation and consequently all the features of differential

calculus on M. Let’s make precise the “local resemblance”.
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3.1.1 Differentiable Manifolds and maps

Charts and Atleses

Definition 3.1. A chart on a topological space M is a pair (x,
 

), where
 

is an open

subset of Rn and

x :
 −→ x(

 
) ⊂ M

is a homeomorphism1 of
 

onto an open set x(
 

) of M. Here x is called the local

homeomorphism of the chart, and x(
 

) the coordinate neighborhood. Frequently,

we refer to “the chart x” when the domain
 

is understood. Let

xi = ui ◦ x−1 : x(
 

) −→ R

for i = 1, . . . , n. Then xi is called the ith-coordinate function, and (x1, . . . , xn) is called a

system of local coordinates for M.

Following the same procedure as in the case of collection of geographical

maps or charts that covers the earth is called an atlas, one can arrive the definition

of the differentiable manifold.

Definition 3.2. An atlas A on a topological space M is a collection of charts on M such

that all the charts map from open subsets of the same Euclidean spaceRn into M, and M is

the union of all the x(
 

)’s such that (x,
 

) ∈ A. A topological space M equipped with an

atlas is called a topological manifold.

Change of coordinates. Let A be an atlas on a topological space M. Notice that if

(x,
 

) and (y,  ) are two charts in A such that x(
 

) ∩ y(  ) = ! ⊂ M is nonempty,

then the map

(x−1 ◦ y) : y−1( ! ) −→ x−1( ! ) (3.1)

is a homeomorphism between open subsets of Rn. We call (x−1 ◦ y) a change of

coordinates.

Definition 3.3. A differentiable manifold is a paracompact2 Hausdorff3 topological

space M equipped with an atlas A such that for any two charts (x,
 

), (y,  ) ∈ A with

1One-to-one correspondence between points in two topological spaces which is continuous in
both directions, also called a continuous transformation.

2A paracompact space is a Hausdorff space such that every open cover has a locally finite open
refinement.

3stated loosely, ...any two points have disjoint neighborhoods.
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x(
 

) ∩ y(  ) = ! nonempty, the change of coordinates (3.1) is differentiable (i.e. of class

C∞) in the ordinary Euclidean sense. The dimension of the manifold M (denoted by

dimM) is the dimension of
 

for any (x,
 

) ∈ A.

Differentiable functions on differentiable manifolds

Definition 3.4. Let f : ! ⊂ M −→ R be a function defined on an open subset ! of a

differentiable manifold M. We say that f is differentiable at p ∈ ! , provided that for

some chart x :
 ⊂ Rn −→ M with p ∈ x(

 
) ⊂ ! , the composition f ◦ x :

 ⊂ Rn −→ R
is differentiable at x−1(p). If f is differentiable at all points of ! , we say that f is

differentiable on ! .

It is a direct consequence using the change of coordinates, that the above differen-

tiability is independent of the choice of the chart.

We denote

F(M) = { f : M→ R| f is differentiable}.

F(M) is called the algebra of real-valued differentiable functions on M.

Maps between manifolds

With the notion of real-valued differentiable functions on a differentiable manifold,

one can define the differentiable maps between manifolds.

Definition 3.5. let M and N be differentiable manifolds, and let Ψ : M −→ N be a map.

We say that Ψ is differentiable, provided that y−1 ◦Ψ◦x is differentiable for every chart

(x,
 

) in the atlas of M and every chart (y,  ) in the atlas of N, where the compositions

are defined. A diffeomorphism between manifolds M and N is a differentiable map

Φ : M −→ N which has a differentiable inverse Φ−1 : N −→ M. If such a map Ψ exists, M

and N are said to be diffeomorphic.

It is an easy consequence that the composition of two differentiable maps is

again differentiable.

3.1.2 Tangent bundle and Induced maps

In Lagrangian mechanics, tangent bundle, which is a manifold itself, is the state

space of the system. Therefore, it plays a crucial role in our study. In mechanics,
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tangent bundle can be thought of as the set of positions and velocities when the

positions of the system is treated as a manifold. It is an interesting fact to see

that one can only speak of velocities at a given position. This section defines the

velocities, i.e., tangent vectors at a given point on the manifold.

Tangent vectors

Definition 3.6 (Tangent vector). Let p be a point of a manifold M. A tangent vector

vp to M at p is a real-valued function vp : F(M) −→ R such that

vp[a f + bg] = avp[ f ] + bvp[g] (the linearity property),

vp[ f g] = f (p)vp[g] + g(p)vp[ f ] (the Leibnizian property),

for all a, b ∈ R and f , g ∈ F(M).

Roughly speaking, vp[ f ] is the ordinary derivative of f at p along a curve

leaving p in the direction vp.

From these properties it is clear that for a chart (x,
 

) on a differentiable

manifold M and for a p ∈ x(
 

), the function

∂

∂xi

∣
∣
∣
∣
∣
∣
p

p : F(M) −→ R

defined by

∂

∂xi

∣
∣
∣
∣
∣
∣
p

[ f ] =
∂ f

∂xi

∣
∣
∣
∣
∣
∣
p

is a tangent vector to M at p for i = 1, . . . , n.

Definition 3.7 (Tangent bundle). The tangent space to a differentiable manifold M

at point p ∈ M is the set of all tangent vectors to M at p and is denoted by TpM. The

collection

TM =
⋃

p∈M

TpM

of all tangent spaces is called the tangent bundle. The tangent bundle projection

map πTM : TM→ M by πTM(v) = p when v ∈ TpM.
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It can be proved that TpM is indeed a finite-dimensional vector space whose

dimension is the same as that of M. The natural candidate for the basis of TpM is





∂

∂x1

∣
∣
∣
∣
∣
∣
p

, . . . ,
∂

∂xn

∣
∣
∣
∣
∣
∣
p




.

Therefore one can write vp ∈ TpM as

vp =

n∑

i=1

vp[xi]
∂

∂xi

∣
∣
∣
∣
∣
∣
p

. (3.2)

where x1, . . . , xn are coordinate functions, i.e. x−1 = (x1, . . . , xn).

The cotangent space T?pM is the dual space to TpM, i.e., the set of linear functionals

on TpM. In a similar fashion one can define the cotangent bundle T?M.

Induced maps

Definition 3.8. Let Ψ : M→ N be a differentiable map between differentiable manifolds

M and N, and let p ∈ M. Then the tangent map of Ψ at p is the map

Ψ?p : TpM→ TΨ(p)N

given by

Ψ?p(p)[ f ] = vp[ f ◦Ψ]

for each f ∈ F(N) and vp ∈ TpM.

Definition 3.9 (Jacobian matrix). Let Ψ : M → N be a differentiable map, where M

is an m-dimensional manifold and N is an n-dimensional manifold. Let p ∈ M, (x,
 

) a

chart on M at p and (y,  ) a chart on N at Ψ(p). The Jacobian matrix
 
(Ψ)(p) of Ψ at

p relative to x and y is the matrix of Ψ?p relative to the bases





∂

∂x1

∣
∣
∣
∣
∣
∣
p

, . . . ,
∂

∂xm

∣
∣
∣
∣
∣
∣
p





and





∂

∂y1

∣
∣
∣
∣
∣
∣
Ψ(p)

, . . . ,
∂

∂yn

∣
∣
∣
∣
∣
∣
Ψ(p)




.

Explicitly,
 
(Ψ)(p) is the matrix

(
∂(y j ◦Ψ)

∂xi
(p)

)

.
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With the concepts developed so far one can discuss the notion of a curve on

a manifold. Let I denotes an open interval of the real line R, and d/du the natural

coordinate vector field on it. For each t ∈ I we have a canonical tangent vector in

TtR, as
d

dt

∣
∣
∣
∣
∣
∣
t

.

Definition 3.10. A curve on a differentiable manifold M is a differentiable function

ααα : I → M. If t ∈ I, the velocity vector of ααα at t is the tangent vector

ααα′(t) = ααα?t





d

du

∣
∣
∣
∣
∣
∣
t




∈ Tααα(t)M.

The value of the velocity vector ααα′(t) on a function f ∈ F(M) is given by

ααα′(t)[ f ] =
d( f ◦ααα)

du
(t).

It is an immediate consequence from Equation (3.2) to write this as

ααα′(t)[ f ] =
∑

i=1

n
d(xi ◦ ααα)

du
(t)

∂

∂xi

∣
∣
∣
∣
∣
∣
ααα(t)

.

3.1.3 Vector and Tensor fields on manifolds

A vector field X on a differentiable manifold M is a correspondence that associates

to each point p ∈ M a vector Xp ∈ TpM. In terms of mappings, X is a mapping of M

into the tangent bundle TM. The field is differentiable if the mapping X : M→ TM

is differentiable.

Similarly, a one-form ω on M associates to each p ∈ M a cotangent vector

ωp. Finally, a tensor α of covariant order r and contravariant order s associates to

each p ∈ M a multi-linear map α : TM × . . .TM × T?M × . . . × T?M → R (with r

copies of TM and s copies of T?M).

We denote

X = {X|X is a vector field on M}.

A covariant tensor field of degree r on a differentiable manifold M is a mapping

α : X(M) × · · · × X(M) → F(M)
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that satisfies

α(X1, . . . , fiYi + giZi, . . . ,Xr) = fiα(X1, . . . ,Yi, . . . ,Xr)

+giα(X1, . . . ,Zi, . . . ,Xr) (3.3)

for all fi, gi ∈ F(M), X1, . . . ,Xr,Yi,Zi ∈ X(M). A vectorvariant tensor field is a

mapping

Φ : X(M) × · · · × X(M) → X(M)

that satisfies (3.3).

Examples 3.1.1: 1. A vector field is a (1, 0)-tensor field on M.

2. A covector field is a (0, 1)-tensor field on M.

3. A Riemannian metric on M is a (0, 2)-tensor field g on M (see Section 3.2).

Associated with each vector field X ∈ X(M) is a section of TM, that is, a

differentiable map X : M → TM such that π ◦ X = idM, where idM denotes the

identity map on M. In particular, X is a map that associates a tangent vector

Xp ∈ TpM with each point p ∈ M. Conversely, each section of the tangent bundle

gives rise in a natural way to an element of X(M).

Vector fields and differential equations have some relationships in common:

a tangent vector to a curve γ : I → M is equal to the tangent vector specified by

the vector field at each point along the curve. In a coordinate chart, to determine

integral curves one obtains the solution of a differential equation.

A vector field along a curve γγγ : (a, b) → M is a function Y that assigns to

each t with a < t < b a tangent vector Y(t) ∈ Mγ(t).

Given a function f ∈ F(M) we let
 

X f denote the Lie derivative of f with

respect to X (sometimes written as X[ f ]) and we let d f denote the one-form such

that for all vector fields X:

〈d f ,X〉 =
 

X f

where 〈·, ·〉 denote the standard pairing between tangent and cotangent spaces.

Given a pair of smooth vector fields X,Y, we let [X,Y] denote their Lie

bracket and let
 

XY denote the Lie derivative of Y with respect to X (sometimes

written as just XY).
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Definition 3.11 (Lie bracket). For X,Y ∈ X(M) the vector field [X,Y] defined by

 
[X,Y] f =

 
X

 
Y f −

 
Y

 
X f , f ∈ F(M),

is the Lie bracket of X and Y, or the Lie derivative of Y with respect to X.

Sometimes, the notations, adXY = [X,Y] and
 

XY = [X,Y] are used by some

authors.

Lie bracket satisfies two fundamental properties: skew symmetry and the

Jacobi identity:

[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0.

In nonlinear control theory, Lie bracket [X,Y] is usually interpreted as a

derivation of Y along the trajectories of X. In particular, if we flow along X, then Y,

then −X, then −Y, all with the same time, and if we return to the same point, then

[X,Y](x) = 0 for x ∈ M. Then the vector fields X and Y are said to commute.

3.1.4 Affine connections

For a general differentiable manifold, there is no natural notion of differentiation

of vector fields. Hence the following definition.

Definition 3.12. An affine connection or covariant derivative on a differentiable

manifold M is a map

∇ : X(M) × X(M) → X(M)

that for X ∈ X(M) we regard as a map

∇X : X(M) → X(M).

It is required to have the following properties:

∇ f X+gY = f∇X + g∇Y, (3.4a)

∇X(Y + Z) = ∇XY + ∇XZ, (3.4b)

∇X( f Y) =
 

X f + f∇XY, (3.4c)

for X,Y,Z ∈ X(M) and f , g ∈ F(M)
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A connection ∇ is not a tensor field, because it is not linear with respect to

functions in its second argument. Also there is no canonical choice of connection

on a differentiable manifold. However, we will see that every Riemannian metric

has a special connection associated with it.

Definition 3.13. Let γγγ : (a, b) → M be curve in a differentiable M, and let ∇ be a

connection on M. The acceleration of γγγ with respect to ∇ is the vector field

t 7−→ ∇γγγ′(t)γγγ′(t),

which we write more simply as ∇γγγ′γγγ′. We say that a curve γγγ : (a, b) → M is a geodesic

with respect to ∇ provided

∇γγγ′(t)γγγ′(t) = 0 (3.5)

for a < t < b.

3.2 Riemannian Geometry

The metric properties of Rn (distances, angles, volumes) are determined by the

canonical Cartesian coordinates. In a general differentiable manifold, however,

there are no such preferred coordinates; to define distances, angles, and volumes

one must add more structure.

Riemannian geometry itself is a vast subject. Here, only the part of it which

is important in the subject of mechanics, is discussed. For a detailed account, one

should refer [do Carmo 1993] for an example.

Definition 3.14. A Riemannian manifold is a pair (M, g), where M is a differen-

tiable manifold and g is a symmetric4, positive definite5 2-tensor field (g is said to be a

Riemannian metric in M).

A Riemannian metric is therefore a smooth assignment of an inner product

to each tangent space. It is usual to write gp(v,w) = 〈v,w〉p.

Proposition 3.2.1. Let (N, g) be Riemannian manifold andΨ : M→ N be an immersion.

Then Ψ?pg is an induced Riemannian metric in M where Ψ?p : TpM→ TΨ(p)N is the

tangent map of Ψ at p ∈ M.

4symmetric if g(v,w) = g(w, v) for all v,w ∈ TpM
5positive definite if g(v, v) > 0 for all v ∈ TpM\{0}
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3.2.1 The Levi-Civita affine connection

Of particular interest to this thesis will be a certain affine connection that is deter-

mined uniquely from a Riemannian metric g on M.

Definition 3.15. Let (M, g) be a Riemannian manifold. Then the unique Levi-Civita

affine connection ∇ : X(M) × X(M) → X(M) of M is defined by

2〈∇XY,Z〉 =
 

X〈Y,Z〉 +
 

Y〈X,Z〉 −
 

Z〈X,Y〉
−〈X, [Y,Z]〉 − 〈Y, [X,Z]〉 + 〈Z, [X,Y]〉 (3.6)

for X,Y,Z ∈ X(M).

Lemma 3.2.1. A Riemannian connection ∇ has the following properties:

∇ f X+gY = f∇X + g∇Y, (3.7a)

∇X(aY + bZ) = a∇XY + b∇XZ, (3.7b)

∇X f Y =
 

X f Y + f∇XY, (3.7c)

∇XY − ∇YX = [X,Y], (3.7d)
 

X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉 (3.7e)

for X,Y,Z ∈ X(M), f , g ∈ F(M) and a, b ∈ R.

3.2.2 The classical treatment of metrics

A frequently used notation for a metric is ds2. Thus we write the metric as

ds2 = 〈 , 〉

and is given in terms of the gi j’s by the formula

ds2 =

n∑

i j=1

gi jdxidx j (3.8)

where

gi j =
〈 ∂

∂xi

,
∂

∂x j

〉

.
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The components of the metric 〈 , 〉 gi j’s are frequently known as the lower g-i j’s

and the elements of the inverse of the matrix (gi j), denoted (gi j), are called upper

g-i j’s.

Sometimes we need to express the Riemannian connection in terms of local

coordinates (x1, . . . xn). Therefore we introduce the Christoffel symbols Γk
i j

of ∇
relative to (x1, . . . xn) as

Γk
i j = dxk

(

∇ ∂
∂xi

∂

∂x j

)

(3.9)

for 1 ≤ i, j, k ≤ n. It is an immediate consequence to write the following

∇ ∂
∂xi

∂

∂x j
=

n∑

k=1

Γk
i j

∂

∂xk
(3.10)

for 1 ≤ i, j ≤ n.

It is possible to define the Christoffel symbols for a general connection,

discussed in Section 3.1.4, on a differentiable manifold. But the symmetry property

Γk
i j = Γk

ji (3.11)

may not hold for a general connection. The following classical expression for the

Γk
i j
’s is used in what follows when we discuss the geometry of the eye movements.

Γk
i j =

n∑

h=1

gih

2

{
∂ghj

∂xk

+
∂ghk

∂x j

−
∂g jk

∂xh

}

(3.12)

3.2.3 Geodesic equations on a Riemannian manifold

Roughly speaking, a geodesic is a curve whose length is the shortest distance

between two points. In the case of a surface M ⊂ Rn, if γγγ is a curve in M, there are

two notions of acceleration of γγγ, namely γγγ′′ and ∇γγγ′γγγ′, where ∇ is the Riemannian

connection of M. γγγ′′ is known as the Rn-acceleration of γγγ and ∇γγγ′γγγ′ is known as the

tangential component of the Rn-acceleration of γγγ. We say that γγγ is a geodesic in M

when the tangential component of the acceleration of γγγ vanishes, i.e., ∇γγγ′γγγ′ = 0 as

in the Definition 3.13. A careful account of geodesics is given in [Nishikawa 2001].
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3.2.4 Curvature

Definition 3.16. The curvature
 

of a Riemannian manifold (M, g) is a correspondence

that associates to every pair X,Y ∈ X(M) a mapping
 

(X,Y) : X(M) → X(M) given by

 
(X,Y)Z = ∇Y∇XZ − ∇X∇YZ + ∇[X,Y]Z, Z ∈ X(M), (3.13)

where ∇ is the Riemannian connection of M.

Note that when M=Rn,
 

(X,Y)Z = 0 for all X,Y,Z ∈ X(M). Therefore
 

can

be thought of as a way of measuring how much M deviates from being Euclidean.

Also, in coordinates {xi} around p ∈ M, we obtain

 
(
∂

∂xi
,
∂

∂x j
)
∂

∂xk
=

(

∇ ∂
∂xj

∇ ∂
∂xi

− ∇ ∂
∂xi

∇ ∂
∂xj

)
∂

∂xk
, since

[

∂

∂xi
,
∂

∂x j

]

= 0

i.e., the curvature measures the non-commutativity of the covariant derivative.

It is sometimes convenient to express
 

in terms of the coordinates. Let
∂
∂xi

= ∂xi
, then

 
(∂xi

, ∂x j
)∂xk

=
∑

`

 `
i jk∂x`

If

X =
∑

i

ui∂xi
, Y =

∑

i

vi∂xi
, Z =

∑

i

wi∂xi
,

 
can be written as

 
(X,Y)Z =

∑

i, j,k,`

 `
i jku

iv jwk∂x` (3.14)

where
 s

i jk =
∑

`

Γ`ikΓ
s
j` −

∑

`

Γ`jkΓ
s
i` + ∂x j

Γs
ik − ∂xi

Γs
jk (3.15)

3.3 Quaternions to represent rotations

In 1843, Hamilton discovered the quaternions which are hyper-complex numbers6

of rank 4 together with the crucial rule
−→
i 2 =

−→
j 2 =

−→
k 2 =

−→
i
−→
j
−→
k = −1. The set of

quaternions, along with the two operations of addition and multiplication, form

6real numbers can be treated as hyper-complex numbers of rank 1, and ordinary complex
numbers as being hyper-complex numbers of rank 2.
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a mathematical system called a ring, more precisely a non-commutative division

ring. Thus, the quaternion product, in general, is not commutative, and the

multiplicative inverse exists for every non-zero element in the set. Here, we

discuss the use of quaternions to represent rotations. Listing’s law can be well

understood with this setting. For a thorough discussion of the topic of quaternions

one should refer [Kuipers 1998], and [Conway & Smith 2003].

Space of quaternions are denoted by Q. We write each a ∈ Q as a0
−→
1 +

a1

−→
i + a2

−→
j + a3

−→
k , call a1

−→
i + a2

−→
j + a3

−→
k its vector part, and a0

−→
1 its scalar part. The

vector a1

−→
i + a2

−→
j + a3

−→
k will be identified with (a1, a2, a3) ∈ R3 without any explicit

mention of it. When there is no confusion we drop
−→
1 from the scalar part, and

simply write it as a0. The vector part of a quaternion a will be denoted by vec(a),

or simply by a, and the scalar part will be denoted by scal(a). Thus we have maps,

vec : Q → R3, a 7→ a = (a1, a2, a3),

and

scal : Q → R, a 7→ a0.

Operations on quaternions: Consider two quaternions p = p0 + p and q = q0 + q.

p.q = p0q0 − p � q + p0q + q0p + p × q (quaternion product)

p? = p0 − p (conjugate of a quaternion)

p � q = scal(p.q?) (dot product of quaternions)

|p| =
√

p?.p =

√

p2
0
+ p � p (norm of a quaternion)

p−1 = p?/|p| (inverse of a quaternion)

Space of unit quaternions will be identified with the unit sphere embedded

in R4, and denoted by S3. The unit quaternions form the group SU(2), the group

of unitary rotations, which is the double covering of the rotation group SO(3). Thus,

they suite well for the study of rotations. Note that for a unit quaternion q, q−1 = q?.

Each q ∈ S3 can be written as q = cos(α/2)
−→
1 + sin(α/2)n1

−→
i + sin(α/2)n2

−→
j +

sin(α/2)n3

−→
k , where, α ∈ [0, π] and n̂ = (n1, n2, n3) is a unit vector in R3. The

notation q = cos(α/2) + n̂ sin(α/2) where n̂ = n1

−→
i + n2

−→
j + n3

−→
k , is also used

interchangeably.
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Theorem 3.3.1. For a unit quaternion q = cos(α/2) + n̂ sin(α/2), the map v → q.v.q−1

represents a simple rotation of a vector v by an angle α about the axis n̂, in Euclidean

3-space.

See Appendix A for a proof of this theorem.

We denote by rot the standard map from S3 into SO(3), i.e., rot : S3 → SO(3)

which maps cos(α/2)
−→
1 + sin(α/2)n1

−→
i + sin(α/2)n2

−→
j + sin(α/2)n3

−→
k to a rotation

around the axis n̂ by a counterclockwise angle α. There are two explicit ways of

describing this map. First, it is easy to verify that

rot(q)(v1, v2, v3) = vec(q.(v1

−→
i + v2

−→
j + v3

−→
k ).q−1).

Second (see Equation (A.2)),

rot(q) =





q2
0 + q2

1
− q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1
− q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0
+ q2

3
− q2

1
− q2

2





.

Space of rotations can be thought of as the unit sphere inR4 with antipodal

points identified (−q represents the same rotation as q). In the standard language,

the set of unit quaternions is a double cover of SO(3), as we already mentioned

earlier. Thus, rot is a 2-to-1 homomorphism7.

7If G and H are groups, then a group homomorphism of G into H is a functionΦ : G → H which
preserves the group operation, i.e., for all g1, g2 ∈ G, (g1g2)Φ = (g1)Φ(g2)Φ
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Chapter 4

Mechanical Control Systems

Mechanics is the paradise of the mathematical sci-

ences, because by means of it one comes to the fruits

of mathematics.

— Leonardo da Vinci

This chapter is an introduction to “geometric mechanics” where we make

use of the ideas discussed in the previous chapter. Among many different prob-

lems, mechanics deals with rigid body movements. In the treatment discussed in

this thesis on eye movements, eye is treated as a rigid sphere free to move inside

the “socket” which consists of the orbital tissues.

Over the years, mechanics and mathematics benefitted from each other. As

calculus was evolved due to Newtonian mechanics, the modern results in geom-

etry and topology play a key role in current developments in many engineering

problems. There is an exciting mass of literature available on this subject (see

[Smale 1970a, Smale 1970b], [Brockett 1982], [Krishnaprasad et al. 1991], [Yang,

Krishnaprasad & Dayawansa 1996] etc.). Textbooks, such as [Arnol’d 1989] gives

a good introduction while [Abraham & Marsden 1987], [Marsden & Ratiu 1999]

and [Bullo & Lewis 2004] discuss more advanced topics. Less geometric treatment

of mechanics (known as “classical mechanics”) can be found in [Goldstein 1980].

In studying the eye movement system, we consider the so-called simple

mechanical control systems [Smale 1970a, Smale 1970b]. Such systems consist the

following:

• a configuration manifold Q,
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• Riemannian metric g on Q that defines the kinetic energy function on the

tangent bundle of Q,

• external forces as possibly time-dependent cotangent bundle-valued func-

tions on the tangent bundle,

• any constraints on the system,

• control forces on the system as covector fields on the configuration manifold.

4.1 The configuration manifold

The first step in the geometric approach to mechanical systems is to assign a differ-

entiable manifold, as the configuration manifold Q, that has 1-1 correspondence

with the configuration of the system. Since this may not be Euclidean, it poses

a problem when describing the dynamics of the system. Thus the next step is to

assign a coordinate chart which describes the precise manner in which points in

Q correspond to configurations of the physical system. Let’s consider an example.

Example 4.1.1: A particle moving on a circle of radius r.

Configuration space for this problem would be

Q = S1 = {x ∈ R2 | ‖x‖ = 1}.

Indeed, the radius of the circle is r. However, the configuration space is typically

chosen to be some dimensionless object, and the physics of the problem, i.e., r in

this case, is included into other aspects of the problem description.

Choose a coordinate chart (x,
 

) for Q = S1 as follows:

x(t) = (x, y) = tan(t)

and

t ∈  
= (−π, π) ⊂ R, and x(

 
) = S1 \ {(−1, 0)} ⊂ S1

Here tan : (−π, π] → R2 \ {(0, 0)}, where t ∈ (−π, π) is the usual angle measured so

that tan(0) = (x, 0) for x > 0.
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4.2 Kinetic energy and Riemannian metric

In this section we discuss how to obtain a Riemannian metric for the configuration

manifold. This is achieved by defining the kinetic energy for the system as a

function on the tangent bundle of the configuration manifold. Therefore, it is

necessary to first introduce the inertia tensor for a rigid body.

A rigid body is a pair (  , µ), where  ⊂ R3 is compact and µ is a finite

measure1 on R3 called the mass distribution. Therefore the mass is written as

µ(  ) =

∫

 dµ

The center of mass of a rigid body is the point

ξξξc =
1

µ(  )

(∫

 ξξξdµ

)

.

The inertia tensor about ξξξ0 of (  , µ) is the linear map IIξξξ0
∈ L(R3;R3) given by

IIξξξ0
(vvv) =

∫

 (ξξξ − ξξξ0) × (vvv × (ξξξ − ξξξ0))dµ. (4.1)

About the center of mass of (  , µ), it is denoted by IIc. The inertia tensor is

symmetric with respect to the inner product ( , )
R3 , i.e.,

(
IIξξξ0

(vvv1),vvv2

)

R3 =
(
vvv1, IIξξξ0

(vvv2)
)

R3 .

Thus the eigenvalues of the inertia tensor IIc are real and let’s denote them as

{J1, J2, J3}. These are called the principal inertias of (  , µ). The orthonormal

eigenvectors associated with these eigenvalues, are called principal axes of (  , µ).

4.2.1 Kinetic energy of a rigid body

The rotational motion of a rigid body (  , µ) may be described by the geodesic

flow of a given left-invariant metric on SO(3), the group of linear orthogonal

orientation-preserving transformations of R3, or, equivalently, with the group of

1one may replace µ by ρdV, where ρ : ! → R is the “mass density”
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3 × 3 orthogonal unimodular matrices:

SO(3) = {RRR : R3 → R3 | (RRRx,RRRy
)

R3 =
(
x, y

)

R3 , detRRR = 1}
= {RRR : R3 → R3 | RRRRRRT = Id, detRRR = 1}

We denote above the standard inner product in R3 by (., .)R3 .

The metric is determined by the body’s inertia tensor. Let the inertia tensor

of the rigid body (  , µ) about the center of mass, be IIc. Here, we generalize the

usual notation 1
2
m‖ẋ̇ẋx‖2

R3
for a particle. That is, treating the mechanical system as a

collection of particles and summing up.

Consider a rigid body that is free to rotate about a fixed point. Let { ! inertial−
eee1, eee2, eee3} be the orthonormal inertial frame and { ! body−bbb1,bbb2,bbb3} be the orthonormal

body frame fixed at its center of mass. For convenience, let’s take the origins of

both frames ! body, ! inertial to be the origin of R3, and by their relative orientation

RRR ∈ SO(3). Therefore the movement can be described by a curve t 7→ RRR(t) ∈ SO(3),

i.e., a point ξξξ ∈  at time t is given by xxx(t, ξξξ) = RRR(t)ξξξ. Therefore the kinetic energy

of the body at time t is given by

K(t) =
1

2

∫

 ‖ẋxx(t, ξξξ)‖2dµ =
1

2

∫

 ‖ṘRR(t)ξξξ‖2dµ.

The body angular velocity is defined as

ΩΩΩ(t) = RRRT(t)ṘRR(t). (4.2)

This is a skew-symmetric matrix. To see that, differentiate RRRT(t)RRR(t) = III3

ṘRR(t)RRR(t) +RRRT(t)ṘRR(t) = 000

giving what is required,

ΩΩΩT(t) = (RRRT(t)ṘRR(t))T = −RRRT(t)ṘRR(t) = ΩΩΩ(t).

Thus the velocities of the rigid body have the form

ṘRR(t) = RRR(t)ΩΩΩ(t), ΩΩΩT(t) = −ΩΩΩ(t). (4.3)
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In other words, we found the tangent space

TRRRSO(3) = {RRRΩΩΩ |ΩΩΩT = −ΩΩΩ}, RRR ∈ SO(3). (4.4)

Denote the space of antisymmetric 3 × 3 matrices by so(3), i.e., it is the tangent

space to SO(3) at the identity:

so(3) = {ΩΩΩ : R3 → R3 |ΩΩΩT = −ΩΩΩ} = TIdSO(3). (4.5)

Note that the space so(3) is the Lie algebra2 of the Lie group SO(3).

Let

ΩΩΩ ∼ ωωω(t) ΩΩΩ(t) =





0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)

−ω2(t) ω1(t) 0





ωωω(t) =





ω1(t)

ω2(t)

ω3(t)





∈ R3. (4.6)

Then one can verify thatΩΩΩ(t)vvv = ωωω(t) × vvv. For a point x in the rigid body its

position in R3 is RRR(t)x. Therefore the velocity of this point is ṘRR(t)x = RRR(t)ΩΩΩ(t)x =

RRR(t)(ωωω(t)× x), i.e., the point x rotates around the line throughωωω(t) with the angular

velocity ‖ωωω(t)‖.
Introduce the following scalar product of matrices ΩΩΩ = (Ωi j) ∈ so(3):

〈

ΩΩΩ1,ΩΩΩ2
〉

= −1

2
tr(ΩΩΩ1ΩΩΩ2) =

1

2

3∑

i, j=1

Ω1
i jΩ

2
i j =

∑

i< j

Ω1
i jΩ

2
i j. (4.7)

This product is compatible with 3 × 3 antisymmetric matrices and 3-dimensional

vectors in (4.6):

〈

ΩΩΩ1,ΩΩΩ2
〉

=
(

ω1ω1ω1,ω2ω2ω2
)

R3
, (4.8)

ΩΩΩi ∼ ωωωi, ΩΩΩi ∈ so(3), ωωωi ∈ R3, i = 1, 2.

Returning to the expression of kinetic energy, we have

K(t) =
1

2

∫

 ‖ṘRR(t)ξξξ‖2dµ =
1

2

∫

 ‖RRR(t)(ωωω × ξξξ)‖2dµ

2i.e., the tangent space to the Lie group at the identity provided with the Lie bracket [ , ]
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K(t) =
1

2

∫

 ‖(ωωω × ξξξ)‖2dµ =
1

2

∫

 (ωωω × ξξξ,ωωω × ξξξ)
R3 dµ

=
1

2

∫

 (ξξξ × (ωωω(t) × ξξξ),ωωω(t))
R3 dµ (Using the result (u, v × w) = (w, u × v) )

=
1

2
(IIc(ωωω(t)),ωωω(t))

R3 (Using Eq. (4.7))

=
1

2
〈ΩΩΩ,ΩΩΩ〉I (Using Eq. (4.8))

Example 4.2.1 (Falling cat): A popular example of the generation of rotational

motion is the falling cat, which is able to execute a 1800 reorientation, all the

while having zero angular momentum. It achieves this by manipulating its joints

to create shape changes. Considering that the angular momentum of a rotating

rigid object is its moment of inertia times its instantaneous angular velocity; shape

changes result in a change in the cat’s moment of inertia and this, together with

the constancy of the angular momentum, creates the overall orientation change.

4.2.2 Riemannian metric on the configuration space

In order to obtain the Riemannian metric on the configuration manifold Q, it is

required to define a (0, 2)-tensor field on Q. Let us define a C∞ map

ρ : Q→ SO(3).

If γ : I → Q is a curve at q0 ∈ Q, there will be an induced curve on SO(3) given by

γρ = ρ ◦ γ : I → SO(3) at RRR0 ∈ SO(3). The curve γρ then defines the corresponding

kinetic energy, i.e., one can assign a positive number K(v0) to the tangent vector

v0 = γ′(0) ∈ Tq0
Q at time 0 along γρ. This indeed is a positive-definite (0, 2)-tensor

field on Q that we term as kinetic energy metric.

Example 4.2.2: For a perfect sphere with moment of inertia I3×3, the left-invariant

Riemannian metric on SO(3) is given by

〈

ΩΩΩ(eeei),ΩΩΩ(eee j)
〉

I
= δi, j (4.9)
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where,

ΩΩΩ(ek) =





0 δ3,k −δ2,k

−δ3,k 0 δ1,k

δ2,k −δ1,k 0





,

and {δl,m} denotes the Kronecker delta function.

4.3 Lagrangian and Hamiltonian formulations

Lagrangian mechanics and Hamiltonian mechanics are the two main points of

view in mechanics. Lagrangian formalism is based on the variational principal

one finds in the calculus of variations. The starting point is the the work of

[Abraham & Marsden 1987], [Arnol’d 1989] which treats the configuration space

as a differentiable manifold. The Hamiltonian formalism is based on the energy

concept. Each formalism provides advantages in problems in mechanics and

circumstances often dictate which, if any, approach is best. One should refer

[Abraham & Marsden 1987], [Marsden & Ratiu 1999], [Arnol’d 1989] etc, for

further account of the subject.

4.3.1 Lagrangian mechanics

LetQ be a C∞-differentiable manifold. A Lagrangian is a C∞-function L onR×TQ,

i.e., a function of time, position and velocity. It is time-independent if there exists

a function L0 : TQ→ R such that L(t, vq) = L0(vq). Most Lagrangians we encounter

are of time-independent nature.

The Lagrangian formulation of mechanics relies on the fact that there are

variational principles behind the Newton’s law F = ma. If (φ,
 

) is a chart for Q

with coordinates (q1, . . . , qn), the Lagrangian is written as L(t, q1, . . . , qn, q̇1, . . . , q̇n),

or L(t,qqq, q̇qq) for short. Usually L is the kinetic energy minus the potential energy of

the system. The variational principle of Hamilton states

δ

∫ b

a

L(t,qqq, q̇qq) = 0 (4.10)



33

where we choose curves qi(t) joining two fixed points inQ over a fixed time interval

[a, b] and calculate the integral regarded as a function of this curve. Hamilton’s

principle says that this function has a critical point. Let δqi be a variation and

(4.10) is equivalent to

n∑

i=1

∫ b

a

(

∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)

dt = 0

n∑

i=1

∫ b

a

[

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)]

δqidt = 0

(4.11)

This leads to the Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n. (4.12)

An interesting geometric result can be obtained when one considers the kinetic

energy Lagrangian

L(qqq, q̇qq) =
1

2

〈
q̇qq, q̇qq

〉
,

which gives rise to the equations of geodesics.

Forces

The Euler-Lagrange equations for a Lagrangian L represents the motion of the

system in the absence of the external interactions or forces. Unlike in Newtonian

mechanics, the “geometric representation” of a force is less clear in Lagrangian

mechanics.

A CrCrCr-force on a Cr-manifold Q is a map F : R × TQ → T?Q. We call it

time-independent if there exists a map F0 : TQ → T?Q with the property that

F(t, vq) = F0(vq). A CrCrCr-force along γγγ is a Cr-covector field F : I → T?Q along

a Cr-curve γ : I → Q. If (q1, . . . , qn) are coordinates in a chart (φ,
 

), then we

write F = Fidqi, for some functions Fi : R × T
 → R, i ∈ {1, . . . , n}, called the

components of the force F. The following principle enables us to formulate the

Lagrangian system to include forces.
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Lagrange-D’alembert principle: The solution γ : I → Q to the simple mechanical

control system satisfies the variational principle

δ

∫

I

(
1

2
‖γ′‖2 −V(γ)

)

︸             ︷︷             ︸

Lagrangian L

dt +

∫

I

〈
F(t), δq

〉
= 0

where the variation δq is an arbitrary vector field along γ.

Note: Systems subject to no force follow geodesics, i.e., δ

∫

I

‖γ′‖2dt = 0 ⇐⇒
∇γ′γ′ = 0.

The Lagrange-D’alembert principle tells us how a force F should appear in

the Euler-Lagrange equations.

Proposition 4.3.1 (Forced Euler-Lagrange equations). Let L be a Lagrangian on Q

with F a force onQ. A curve γ : [a, b] → Q satisfies the Lagrange-D’alembert principle for

the force F and Lagrangian L if and only if for any coordinate chart (φ,
 

) that intersects

the image of γ, the coordinate representation t 7→ (q1, . . . , qn) satisfies the forced Euler-

Lagrange equations
d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi, i = 1, . . . , n. (4.13)

where F1, . . . , Fn are the components of F.

Potential forces

A potential force, given a potential function V on Q, is given by F(t, vq) = −dV(q).

These are independent of time and velocity. Potential function V can be thought

of as a “storage function”, since by increasing its value one can store energy which

could later become kinetic energy.

4.3.2 Hamiltonian mechanics

Hamiltonian formalism is obtained by introducing the conjugate momenta

pi =
∂L

∂q̇i
, i = 1, . . . , n, (4.14)
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and making the change of variables (qi, q̇i) 7→ (qi, pi) using the Legendre transform to

introduce the Hamiltonian

 
(qi, pi, t) =

n∑

j=1

p jq̇
j − L(qi, q̇i, t). (4.15)

Then
∂

 

∂pi
= q̇i +

n∑

j=1

(

p j

∂q̇ j

∂pi
− ∂L

∂q̇ j

∂q̇ j

∂pi

)

= q̇i

and
∂

 

∂qi

=

n∑

j=1

p j

∂q̇ j

∂qi
− ∂L

∂qi
−

n∑

j=1

∂L

∂q̇ j

∂q̇ j

∂qi
= − ∂L

∂qi
.

Using (4.12), the above reduces to

∂
 

∂qi
= −ṗi.

Therefore the Euler-Lagrange equations are equivalent to Hamilton’s equations

q̇i =
∂

 

∂pi
,

ṗi = −
∂

 

∂qi
,

(4.16)

where i = 1, . . . , n.

Holonomic and nonholonomic constraints

Many mechanical systems are obtained from higher-dimensional ones by adding

constraints. Rigidity in rigid-body mechanics, incompressibility in fluid mechan-

ics and a particle constrained to move on a sphere are few examples for such

systems. The eye movement system, as we show in Chapter 6, is another example.

Constraints on a mechanical system are two-fold. Holonomic constraints

are those imposed on the configuration space of the system which are gener-

ally integrable. Constraints involving the conditions on the velocity that are

non-integrable, are termed nonholonomic. A rolling disk without slipping is an

example for such a system. A velocity constraint  can be holonomic, if all curves

through a point q ∈ Q satisfying the constraint are evolving on the maximal
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integral manifold for  through q. In such an event, one should restrict one’s

consideration to maximal integral manifold. This may not be possible sometimes,

for an example, if the maximal integral manifold is not a submanifold.

A holonomic constraint can be defined for our purposes as the specifica-

tion of a submanifold N ⊂ Q of a given configuration manifold Q. Precisely, a

holonomic constraint is an integrable subbundle of TQ. Thus given a Lagrangian

L : TQ→ R, it can be restricted to TN to give a Lagrangian LN and one can associate

variational principles and Hamiltonian vector fields.

4.4 Maximum Principle

After forty years from its first publication, the Pontryagin Maximum Principle

(PMP) [Pontryagin, Boltyanskii, Gamkrelidze & Mishchenko 1964] remains as the

most powerful tool in the study of optimal control problems. Recent generaliza-

tions of PMP with a geometric setting has been discussed in [Sussman 1998, Suss-

man & Willems 2000].

Here, a control system is viewed as a dynamical system whose dynamical

laws are not entirely fixed, but depend on the controls that can be determined in

order to obtain a temporal evolution with some properties. It is assumed that the

configuration space is a smooth manifold M. The motion on M follows a number

of tangent directions, depending on the control u : [a, b] → U ⊂ Rm:

ẋ(t) = f (x(t), u(t)), x ∈ M. (4.17)

Problem 4.4.1: Find a pair (u(t), x(t)) that minimizes the functional

J(u, x) =

∫ b

a

L(x(t), u(t))dt,

subject to ẋ(t) = f (x(t), u(t)), x(a) = x0 and x(b) = x1, where x(t) is a curve on the

state manifold M, u : [a, b] → U ⊂ Rm is a measurable function, and L(x, u) ∈
C∞(M ×Rm)

The system in (4.17) puts a restriction on our admissible curves. Given the

Lagrangian L(x, u), one defines the Hamiltonian

 
(x, λ, u) = λ. f (x, u) − λ0L(x, u).
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λ0 ∈ {0, 1} is known as the abnormal multiplier.

The necessary condition is given in [Pontryagin et al. 1964] to minimize J

with the restriction of equation (4.17).

Theorem 4.4.1 (PMP). A necessary condition for the pair (u(t), x(t)) to solve Problem

4.4.1 is that there exist a one-form field λ(t) along x(t) and a constant p0 ∈ {0, 1} such that

1. (λ(t), λ0) , (0, 0) for all t ∈ [a, b],

2. ẋ(t) = ∂  
∂λ

(x(t), λ(t), u(t)) and λ̇(t) = ∂  
∂x

(x(t), λ(t), u(t)) for all t ∈ [a, b],

3.
 

(x(t), λ(t), u(t)) = max
ũ∈U

 
(x(t), λ(t), ũ(t)) for all t ∈ [a, b],

4.
 

(x, λ, u) = λ. f (x, u)−λ0L(x, u) is constant almost everywhere along the solutions

and if we allow the end points to vary, this constant may be chosen to be zero.

PMP is indeed a first order necessary condition for optimality. Once the

target is set as the attainable set from x0, one can obtain a family of optimal

trajectories. If u(t) is an admissible control and λ(t) a Lipschitizian3 curve in T?M

satisfying PMP, then λ(t) is called an extremal. PMP provides a lift to the cotangent

bundle, that is, a solution to a suitable pseudo-Hamiltonian system. The whole

set of extremals in the cotangent bundle is called the extremal synthesis. We call the

trajectories, that do not depend on the cost4 J and on the constraints on the control

set U, endpoint singular trajectories 5. Endpoint singular trajectories that are also

extremals are called singular extremals. Extremal trajectories for which λ0 = 0 are

called abnormal extremals. Clearly, abnormal extremals do not depend on the cost

J, but depend on the constraint u ∈ U.

3A function f (x) satisfies the Lipschitz condition of order α at x = 0 if | f (h) − f (0)| ≤ B|h|β for all
|h| < ε , where B and β are independent of h, β > 0, and α is an upper bound for all β for which a
finite B exists.

4For ¯!
(x, λ, u) = λ. f (x, u), solutions to ẋ(t) = ∂

¯"
∂λ , ṗ(t) = − ∂

¯"
∂x and ∂ ¯"

∂u = 0.
5i.e., there are singularities in the end-point-mapping u(.) → γ(T) in [0,T]
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Chapter 5

Mechanics of the Eye Movement:

Planer Saccades

The description of right lines and circles, upon which geom-

etry is founded, belongs to mechanics. Geometry does not

teach us to draw these lines, but requires them to be drawn.

— Isaac Newton

(Principia Mathematica.)

Before discussing the more complex three-dimensional eye movements,

let’s focus our attention to the movement of the eye on a horizontal plane. The

planer movement is controlled by the two muscles, medial and lateral recti acting as

a agonist/antagonist pair. D. A. Robinson (see [Robinson 1964]) is one of the first

researchers to propose a mechanical model that could generate planer saccadic eye

movements resembling to that of humans and monkeys. The model presented here

is more detailed in describing the muscle dynamics, compared to the Robinson’s

original lumped parameter model. This model was first discussed in [Martin &

Schovanec 1998] (therefore we call it M-S model) and a study of smooth pursuit eye

movements using this model is given in [Sugathadasa, Dayawansa & Martin 2000].

As we discussed in Section 2.2, saccades are believed to be happening under open-

loop control. In this chapter we propose a “look-up table like” learning curves to

generate the input neural activations.
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5.1 Planer model of the eye

The planer eye movements are generated, as we discussed above, due to the action

of medial and lateral rectus muscles and a passive moment due to the orbit which

restrains the rotation of the globe. Each musculotendon is modeled as a Hill-type

complex discussed in Appendix B. Schematic of the model presented here is

shown in Figure 5.1 is restricted to horizontal saccadic eye movements. Then the

Neuronal Signal

Active Tension

t t

time constants
Activation, Deactivation

M−S Model

Fact1

Ft1
Ft2

Mm1 Mm2

Kg

Jg

lm1 lm2

Bm1 Bm2

a1(t) a2 (t)

τd1
τd2

Kt1
Kt2

Bg

Fact2

n2n1

Fpe2
Fpe1

τa2τa1

θ

Figure 5.1: The model of the eye plant for horizontal saccades

equation of motion for the eye globe can be written as:

Jgθ̈ + Bgθ̇ + Kgθ = Ft1
− Ft2

(5.1)

where JG,BG, and KG denote the globe inertia, globe viscosity, and globe elasticity

respectively in terms of cgs units and radians. θ is the amount of horizontal

rotation and Ft1
, Ft2

are the forces in the tendons attached to the eye. Note the

change in the units where,Jg =
JG

980r(180/π)
with r denoting the radius of the eye

globe. The same applies to Bg, Kg.

In order to represent the model in the form ẋ = f (x)+ g1(x)u1+ g2(x)u2 where

u1 and u2 are the neural inputs, let the state vector be

xT(t) = [θ, θ̇, lm1, l̇m1, lm2, l̇m2, Ft1
, Ft2

, a1, a2].

Then the model can be written as

ẋ = f (x) + g1(x)u1 + g2(x)u2
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where f (x), g1(x), and g2(x) can be formulated as follows using equations (B.1),

(B.2), (B.4), (B.5), (B.7) as

f (x) =





x2

1
Jg

(x7 − x8 − Bgx2 − Kgx1)

x4

980
M

(x7 − Fact(x3, x4, x9) − Fpe(x3) − Bpm(180
πr

)x4)

x6

980
M

(x8 − Fact(x5, x6, x10) − Fpe(x5) − Bpm(180
πr

)x6)

Kt(x7)
[

−x2 − (180
πr

)x4

]

Kt(x8)
[

x2 − (180
πr

)x6

]

−x9

τ1

−x10

τ1





g1(x) = (1/τ1) [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

g2(x) = (1/τ1) [0, 0, 0, 0, 0, 0, 0, 0, 0, 1] .

Typical neural signals, muscle activations, and the resulting saccadic trajec-

tories together with muscle forces are shown in Figures 5.2 and 5.3.
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Figure 5.2: Neuronal inputs and the resulting activation signals to the agonist and
antagonist (100 saccade)
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Figure 5.3: Simulation of 10o Saccade and the corresponding forces in the tendons

5.2 Learning curves

The motorneural signal, shown in Figure 5.2, is composed of a tonic (Step) and

a Phasic (Pulse) component. Therefore, the activity curves can be completely

parameterized by a, b and T values. Curves which describe the variation of a, b

and T for horizontally directed saccades from the primary position are shown in

Fig 5.4.

Thus T varies depending on the initial gaze direction and the amplitude

of the saccade whereas a and b only depends on the steady state gaze direction.

Therefore the parameters (a1, b1,T1) for neuronal activity levels for horizontal sac-

cades originating from any gaze direction can be obtained as

(a1, b1) = (a0, b0)

T1 = T0[1 + f1(θi)g1(∆θ)]

where θi and ∆θ are the initial gaze position and saccade amplitude respectively

and T0 corresponds to the T value for a equal amplitude saccade originating from

the primary position. f1(θi) and g1(∆θ) can be treated as scaling factors.
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Figure 5.4: “Learning Curves”: Cubic Hermite interpolant splines developed from hor-
izontal saccadic eye movements originating from the primary position. The bottom two
figures demonstrate how the ‘T’ value changes with the initial gaze position.

5.3 Remarks

“Learning Curves” enables the control signals (i.e. parameters of neural activity

patterns) to be generated rapidly, which is an important issue in fast (< 40ms)

saccadic movements. This approach can be compared to the role played by the

superior colliculus (SC) leading to a “colliculocentric” model (see [Optican 1994]).
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Chapter 6

Mechanics of the Eye Movement:

Geometry of Listing Space

The laws of Nature are written in the language of mathemat-

ics ... the symbols are triangles, circles and other geometrical

figures, without whose help it is impossible to comprehend

a single word.

— Galileo Galilei

Human eye, being spherical in shape, has SO(3), the space of 3 × 3 rotation

matrices, as its natural configuration space. However, from a physiological view-

point, only the gaze direction vector is important, and the orientation of the eye is

otherwise irrelevant. From simple geometric reasoning it follows that each gaze

direction of the eye correspond to a circle of rotation matrices in the configuration

space. Thus, there is an ambiguity as to which rotation matrix is to be employed to

produce a particular gaze direction. Listing’s law (see section 2.3) describes pre-

cisely how this ambiguity is resolved: all rotation matrices employed have their

axes of rotations orthogonal to the standard (or frontal) gaze direction [Tweed &

Villis 1990]. Thus, the dynamics of the eye may be treated as a mechanical system

with holonomic constraints (see holonomic constraints in section 4.3.2), which

in essence limit the configuration space to be a two dimensional submanifold of

SO(3). We will refer to it as the Listing Space. In this Chapter we will describe ba-

sic geometric features of the Listing Space. This then will enable one to formulate
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dynamic equations of the eye motion using various neuro/muscular models and

we will discuss them in the next Chapter.

We make the following fundamental assumptions throughout:

• Eye is a perfect sphere.

• All eye movements obey Listings law.

We remark here that the second assumption pertains to all eye configurations

throughout its motions, and not just on the initial and final points of an eye

movement.

6.1 Listing Manifold is Diffeomorphic to the Projec-

tive Space

Listings law states that all eye rotations have an axis orthogonal to the primary

gaze direction. If we were to take the (x1, x2, x3) axes such that x3 axis is aligned

with the normal gaze direction, then Listing’s law amounts to a statement that all

eye rotations have quaternion representations q ∈ S3 with q3 = 0. We denote by

ListListList, the subset of SO(3) which obey Listing’s law. In this section we will show

that ListListList is diffeomorphic to the projective space P2.

Let us consider the map,

emb : R3 → S3,

(x1, x2, x3) 7→ 1√
1 + ‖x‖2





1

x1

x2

x3





.

Let us observe that emb(x) is the quaternion which describes a rotation around

(1/‖x‖)x by an angle 2arctan(‖x‖) (where the angle is in [0, π)). The ambiguity

at x = 0 is resolved by mapping it to
−→
1 . Therefore, each vector with zero x3

coordinate describes a unique Listing rotation. However, those Listing rotations

with angle of rotation equal to π are missing here. Let us observe that a rotation

by π around an axis n is identical to a rotation by an angle −π around −n. Thus

we may describe ListListList by appropriately compactifying R3. This compactification
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is best understood in the following way. Let us start with R4 with coordinates

(x0, x1, x2, x3) and put the usual projective equivalence relation that collapse one

dimensional subspaces to points. This way, each (x1, x2, x3) ∈ R3 is identified with

the equivalence class of (1, x1, x2, x3), hence associated with the unique rotation of

emb(x1, x2, x3). Equivalence classes of (0, x1, x2, x3) are uniquely associated with

rotations by an angle of π or −π. This association is unambiguous since rotation

by π and −π around the unit vector n amounts to the same rotation matrix in

SO(3). Thus we conclude that the space ListListList is diffeomorphic to P2.

This identification provides an obvious way to come up with local coor-

dinates on ListListList. However, it turns that the description of a natural Riemannian

metric on ListListList is quite awkward using these coordinates. Hence, we will use an

axis-angle local coordinate system to carry out most of our computation. The two

local coordinates (θ, φ) describe the polar coordinate angle of the axis of rotation

in the (x1, x2) plane and the angle of rotation around the axis respectively. Here

we take (θ, φ) ∈ [0, π] × [0, 2π]. Of course we must keep in mind that these fail to

be local coordinates when φ = 0 or φ = 2π since in these cases the corresponding

rotation is the identity regardless of the value of θ.

6.2 Riemannian Metric on ListListList

Let us assume that the eye is a perfect sphere, and its moment of inertia is equal to

II3×3. This is associated with the left invariant Riemannian metric on SO(3) given

by,

〈

ΩΩΩ(ei),ΩΩΩ(e j)
〉

I
= δi, j,

where,

ΩΩΩ(ek) =





0 δ3,k −δ2,k

−δ3,k 0 δ1,k

δ2,k −δ1,k 0





,

and {δl,m} denotes the Kronecker delta function. An easy way to carry out compu-

tation using this Riemannian metric is provided by the isometric submersion rot.
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Notice that
−→
i ,
−→
j ,
−→
k is an orthonormal basis of T−→

1
S3, and

rot









cos(t/2)

sin(t/2)

0

0









= etΩΩΩ(e1), rot









cos(t/2)

0

sin(t/2)

0









= etΩΩΩ(e2),

rot









cos(t/2)

0

0

sin(t/2)









= etΩΩΩ(e3).

Hence, it follows that rot
∗
−→
1

−→
i = 2ΩΩΩ(e1), rot

∗
−→
1

−→
j = 2ΩΩΩ(e2) and rot

∗
−→
1

−→
k = 2ΩΩΩ(e3),

hence {rot
∗
−→
1

−→
i /2, rot

∗
−→
1

−→
j /2, rot

∗
−→
1

−→
k /2} is an orthonormal frame in TId(SO(3)) (see

equations (4.4) and (4.5) in section 4.2.1). Now, since rot is equivariant under left

translations, and Riemannian metrics on S3 as well as on SO(3) are left invariant,

it follows that {rot∗q
−→
i /2, rot∗q

−→
j /2, rot∗q

−→
k /2} is an orthonormal basis of Trot(q)SO(3)

for all q ∈ S3.

S3 rot−−−−→ SO(3)

y


y

TqS
3 rot∗−−−−→ Trot(q)SO(3)

Let us now use the orthonormal frame {q.−→i /2, q.−→j /2, q.−→k /2} of TqS
3 to compute

the Riemannian metric on ListListList induced from SO(3) (see induced metric, in propo-

sition 3.2.1).

Let us define,

g11 =

〈

∂

∂θ
,
∂

∂θ

〉

g12 =

〈

∂

∂θ
,
∂

∂φ

〉

(6.1)

g22 =

〈

∂

∂φ
,
∂

∂φ

〉

.
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Let ρ : [0, π] × [0, 2π] → S3,

ρ(θ, φ) =





cos(φ/2)

cos(θ)sin(φ/2)

sin(θ)sin(φ/2)

0





.

This can be illustrated as follows:

ListListList
ρ−−−−→ S3


y


y

T(θ,φ)ListListList
ρ∗−−−−→ Tρ(θ,φ)S

3

Then

 
(ρ)(θ, φ) =

(

ρ∗(
∂
∂θ ) ρ∗(

∂
∂φ)

)

=





0 − 1
2
sin(φ/2)

−sin(θ)sin(φ/2) 1
2
cos(θ)cos(φ/2)

cos(θ)sin(φ/2) 1
2
sin(θ)cos(φ/2)

0 0





Notice that

ρ(θ, φ).
−→
i =





−cos(θ)sin(φ/2)

cos(φ/2)

0

−sin(θ)sin(phi/2)





, ρ(θ, φ).
−→
j =





−sin(θ)sin(φ/2)

0

cos(φ/2)

cos(θ)sin(φ/2)





,

ρ(θ, φ).
−→
k =





0

sin(θ)sin(φ/2)

−cos(θ)sin(φ/2)

cos(φ/2)





.

Then, for θ = 0, it is easily observed that,

ρ∗(0,φ)(
∂

∂θ
) = sin(φ/2)cos(φ/2)ρ(0, φ).

−→
j − sin2(φ/2)ρ(0, φ).

−→
k ,

ρ∗(0,φ)(
∂

∂φ
) =

1

2
ρ(0, φ).

−→
i .



48

Hence according to Proposition 3.2.1, we have,

〈u, v〉ListListList =
〈

ρ∗(0,φ)(u), ρ∗(0,φ)(v)
〉

S3
, u, v ∈ T(0,φ)ListListList.

Therefore using the relations given in equation (6.1) and proper scaling

g11 = 4sin2(φ/2),

g12 = 0,

g22 = 1.

Thus, the Riemannian metric on ListListList, using the result in equation (3.8), is,

g = 4sin2(φ/2)dθ2 + dφ2.

Notice that this expression is singular at φ = 0. This represents the fact that (θ, φ)

fail to be local coordinates around φ = 0.

6.3 Geometry of the Listing Space

6.3.1 Connection on ListListList

Let us compute the Riemannian connection, ∇, on ListListList now. It is well known that

∇ is uniquely defined by the formula (see Section 3.6 and [Boothby 1986]),

2〈∇XY,Z〉 =
 

X〈Y,Z〉 +
 

Y〈X,Z〉 −
 

Z〈X,Y〉
−〈X, [Y,Z]〉 − 〈Y, [X,Z]〉 + 〈Z, [X,Y]〉 (6.2)

Let us use subscripted coordinates (y1, y2) to denote (θ, φ). Then,∇ can be described

in local coordinates (y1, y2) via,

∇∂yi/∂y j
= Γk

i j∂/∂yk,
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where, Γk
i, j

are the Christoffel symbols [do Carmo 1993]. They can be calculated

using Equation (3.12):

Γk
i j =

2∑

h=1

gih

2

{
∂ghj

∂yk

+
∂ghk

∂y j

−
∂g jk

∂yh

}

i, j, k = 1, 2

and the symmetry property given in Equation (3.11). Here

(gi j) =





g11 g12

g21 g22




=





4 sin2(φ/2) 0

0 1




, (lower g-i j’s)

and,

(gi j) =





g11 g12

g21 g22




=





1
4 sin2(φ/2)

0

0 1




. (upper g-i j’s)

Thus, we obtain expressions for Christoffel symbols,

Γ1
11 = 0, Γ2

11 = −sin(φ),

Γ1
12 =

1

2tan(φ/2)
, Γ1

21 =
1

2tan(φ/2)
,

Γ2
12 = 0, Γ2

21 = 0,

Γ1
22 = 0, Γ2

22 = 0.

6.3.2 Equations of Geodesics on ListListList

Christoffel symbols can be used to compute parallel transport on ListListList. In particular,

one may derive equations for geodesics (see section 3.2.3) using them. Let σ(t) =

(θ(t), φ(t)) be a geodesic on ListListList. Then from Equation (3.5), we have,

∇σ̇(t)σ̇(t) = 0,

where

σ̇(t) =

(

θ̇
∂

∂θ
+ φ̇

∂

∂φ

)
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Now,

∇σ̇(t)σ̇(t) = ∇(
θ̇ ∂∂θ+φ̇

∂
∂φ

)

(

θ̇
∂

∂θ
+ φ̇

∂

∂φ

)

=

(

θ̇∇ ∂
∂θ
+ φ̇∇ ∂

∂φ

) (

θ̇
∂

∂θ
+ φ̇

∂

∂φ

)

(Using (3.7a))

= θ̇∇ ∂
∂θ

(

θ̇
∂

∂θ

)

+ θ̇∇ ∂
∂θ

(

φ̇
∂

∂φ

)

+ φ̇∇ ∂
∂φ

(

θ̇
∂

∂θ

)

+ φ̇∇ ∂
∂φ

(

φ̇
∂

∂φ

)

(Using (3.7b))

= θ̈
∂

∂θ
+ φ̈

∂

∂φ
+ θ̇2∇ ∂

∂θ

∂

∂θ

+ θ̇φ̇(∇ ∂
∂θ

∂

∂φ
+ ∇ ∂

∂φ

∂

∂θ
) + φ̇2∇ ∂

∂φ

∂

∂φ
. (Using (3.7c))

Hence,

θ̈
∂

∂θ
+ φ̈

∂

∂φ
+ θ̇2∇ ∂

∂θ

∂

∂θ
+ θ̇φ̇(∇ ∂

∂θ

∂

∂φ
+ ∇ ∂

∂φ

∂

∂θ
) + φ̇2∇ ∂

∂φ

∂

∂φ
= 0.

Using

∇ ∂
∂θ

∂

∂θ
=

2∑

k=1

Γk
11

∂

∂yk
= − sin(φ)

∂

∂φ
, ∇ ∂

∂θ

∂

∂φ
=

2∑

k=1

Γk
12

∂

∂yk
=

1

2 tan(φ/2)

∂

∂θ
,

∇ ∂
∂φ

∂

∂θ
=

2∑

k=1

Γk
21

∂

∂yk
=

1

2 tan(φ/2)

∂

∂θ
, ∇ ∂

∂φ

∂

∂φ
=

2∑

k=1

Γk
22

∂

∂yk
= 0,

where (y1, y2) = (θ, φ), we obtain the equations of geodesics,

θ̈ +
1

tan(φ/2)
θ̇φ̇ = 0,

φ̈ − sinφθ̇2 = 0.

(6.3)

Figure 6.1 display geodesics emanating from (π/4, π/4) in the Listing space.
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2

Listing Geodesics

φ

θ−π/2 π/2

Figure 6.1: Geodesics emanating from(π/4, π/4)

6.3.3 Curvature

From the Christoffel symbols we may compute the Riemann curvature tensor
 

using the Definition 3.16. In terms of the basis1 {∂θ, ∂φ}, Equation (3.13) becomes

 
(∂θ, ∂φ)∂θ = ∇∂θ∇∂φ∂θ − ∇∂φ∇∂θ∂θ, since [∂θ, ∂φ] = 0,

this evaluates to,

 
(∂θ, ∂φ)∂θ = −cos(φ/2)∂θ

 
(∂θ, ∂φ)∂φ =

1

4
∂θ.

In particular, the Gauss curvature is given by,

K(θ, φ) =
〈  

(∂θ, ∂φ)∂φ, ∂θ
〉

/ 〈∂θ, ∂θ〉
= 1/4

The fact that the Gauss curvature is constant, is indeed very surprising.

1We use the short notation ∂θ =
∂
∂θ
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Chapter 7

Mechanics of the Eye Movement:

Optimal Control

I can tell the lion by its claws

— Johann Bernoulli

(After reading an anonymous solution to the Brachys-

tochrone problem that he realized was Newton’s solu-

tion.)

In this chapter, we will discuss how the results presented in Chapter 4 can be

applied in the eye movement control. Lagrangian and Hamiltonian formulations

are presented together with an application of the Maximum principle in order to

obtain optimal trajectories minimizing the control energy. We will compare these

trajectories with geodesics on ListListList and SO(3) trajectories. Finally, the application

of a neuro/muscular models is discussed.

7.1 Equations of motion

Let us write down a potential function in the form V(θ, φ) and generalized forces

τθ, τφ. Now the Lagrangian (see section 4.3.1) is,

L(θ, φ, θ̇, φ̇) =
1

2
‖θ̇ ∂
∂θ

+ φ̇
∂

∂φ
‖2 − V(θ, φ). (7.1)
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Hence, from Euler-Lagrange equations given in equation (4.13) , we obtain

equations of motion,

θ̈ + θ̇φ̇cot(φ/2) +
1

4
csc2(φ/2)

∂

∂θ
V =

1

4
csc2(φ/2)τθ

φ̈ − θ̇2 sin(φ) +
∂

∂φ
V = τφ.

(7.2)

Notice that when V(θ, φ) = 0, i.e., the Lagrangian becomes only the kinetic energy,

and no forces acting on the system, Equation (7.2) reduces to that of geodesics

given in Equation (6.3).

7.2 Optimal control

7.2.1 Case I: Generalized torques

Let us take V(θ, φ) = sin2(φ/2). Equations (7.2) become

θ̈ + θ̇φ̇ cot(φ/2) =
1

4
csc2(φ/2)τθ

φ̈ − θ̇2 sin(φ) +
1

2
sin(φ) = τφ.

(7.3)

Let [z1, z2, z3, z4]′ = [θ, θ̇, φ, φ̇]′, then (7.3) can be written as

d

dt





z1

z2

z3

z4





=





z2

−z2z4cot(z3/2)

z4

z2
2sin(z3) − 1

2
sin(z3)





+





0
1
4
csc2(z3/2)

0

0





τθ +





0

0

0

1





τφ (7.4)

Assume that we wish to control the state (θ, θ̇, φ, φ̇) from (θ0, 0, φ0, 0) to

(θ1, 0, φ1, 0) in T unit of time, while minimizing the control energy,

∫ T

0

[

(τθ(t))
2 + (τφ(t))2

]

dt.

Let the Lagrangian be

L =
1

2

(

(τθ(t))
2 + (τφ(t))2

)

,



54

and denote the costate by λ. Construct the Hamiltonian

 
(z, λ) = λ.ż − L(z)

= λ1z2 − λ2z2z4 cot(z3/2) + λ3z4 + λ4z2
2 sin(z3) − 1

2
λ4 sin(z3)

λ2

4 sin2(z3/2)
τθ + cλ4τφ +

1

2

(

(τθ(t))
2 + (τφ(t))2

)

Then the Hamiltonian system (using the Equations (4.16)) becomes

d

dt





z1

z2

z3

z4

λ1

λ2

λ3

λ4





=





z2

−z2z4cot(z3/2) + 1/4sin2(z3/2)τ∗θ
z4

z2
2
sin(z3) − 1

2
sin(z3) + τ∗

φ

0

−λ1 + λ2z4cot(z3/2) − 2λ4z2sin(z3)

− 1
2
λ2z2z4csc2(z3/2) − λ4z2

2cosz3 +
1
2
λ4cos(z3) + 1

2
λ2cot(z3)csc2(z3)τ∗θ

λ2z2cot(z3/2) − λ3





According to the Maximum Principle (see Section 4.4), one can obtain the

following controls

τθ = − λ2

4 sin2(z3/2)
,

τφ = −λ4.
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Therefore, the system becomes,





ż1

ż2

ż3

ż4

λ̇1

λ̇2

λ̇3

λ̇4





=





z2

−z2z4cot(z3/2) − λ2

16
csc4(z3/2)

z4

z2
2sin(z3) − 1

2
sin(z3) − λ4

0

−λ1 + λ2z4cot(z3/2) − 2λ4z2sin(z3)

(− 1
2
λ2z2z4csc2(z3/2) − λ4z2

2cos(z3)+

1
2
λ4cos(z3/2) − λ

2

2

16
csc4(z3/2)cot(z3/2))

λ2z2cot(z3/2) − λ3





. (7.5)

Figure 7.1(a) shows an example of an optimal path in the Listing space and Fig-

ure 7.2(b) shows the corresponding torques.
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(a) Optimal path and the geodesic (θ, φ)
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(b) θ and φwith time

Figure 7.1: Optimal path from (π/3, π/4) to (π/10, π/10) for Case I

7.2.2 Case II: Simplified muscles

Here we assume a linearized model for each of the six musculotendons. Let each

musculotendon consist of a linear spring with spring constant ki, a damper with

damping constant bi, and an active force Fi, where i = 1 . . . 6.
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(b) τθ and τφ for the optimal path

Figure 7.2: θ̇, φ̇ and τθ, τφ corresponding to Optimal path from (π/3, π/4) to
(π/10, π/10) for Case I

Projecting the torques to ListListList

Assume the changes in θ and φ as θ −→ θ + δθ and φ −→ φ.

Virtual work by the spring: ki(li − li0)δl = ki(li − li0)
∂li
∂θdθ. Thus

τθ = ki(li − li0)
∂li

∂θ
.

Also note,

l̇i = θ̇
∂li

∂θ
+ φ̇

∂li

∂φ
.

Therefore for the damper:

Fdamp = bi l̇i = bi(θ̇
∂li

∂θ
+ φ̇

∂li

∂φ
)

Then the torque with the active force Fi

τθ =
6∑

i=1

[Fi + Ci]
∂li

∂θ

τφ =
6∑

i=1

[Fi + Ci]
∂li

∂φ

(7.6)
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Figure 7.3: Optimal path in R3 for Case I

where

Ci = ki(li − li0) + bi(θ̇
∂li

∂θ
+ φ̇

∂li

∂φ
). (7.7)

Now the optimal control problem becomes one of minimizing

∫ T

0

6∑

i=1

F2
i dt. (7.8)

Therefore, let L = 1
2

∑6
i=1 F2

i
and construct the Hamiltonian

 
(z, λ) = λ1z2 − λ2z2z4cot(z3/2) + λ3z4 + λ4z2

2sin(z3) − 1

2
λ4sin(z3) +

λ2

4sin(z3/2)

6∑

i=1

[Fi + Ci]
∂li

∂θ
+ λ4

6∑

i=1

[Fi + Ci]
∂li

∂φ
+ L(z).

Maximum principle gives

F∗i = −
λ2

4sin2(z3/2)

∂li

∂θ
− λ4

∂li

∂φ

Hence

τ∗θ =
6∑

i=1

{

− λ2

4sin2(z3/2)

∂li

∂θ
− λ4

∂li

∂φ
+ Ci

}

∂li

∂θ
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τ∗φ =
6∑

i=1

{

− λ2

4sin2(z3/2)

∂li

∂θ
− λ4

∂li

∂φ
+ Ci

}

∂li

∂φ

Let’s find ∂li
∂θ and ∂li

∂φ :

Let qi and pi(t) be the fixed end and the point of attachment to the eye, of the

muscle. Then,

l2
i (t) = (pi(t) − qi)

T(pi(t) − qi)

where pi(t) = RRRpi(0) and RRR is the 3 × 3 rotation matrix.

Then

l2
i (t) = (RRRpi(0) − qi)

T(RRRpi(0) − qi)

= pT
i (0)pi(0) + qiq

T
i − 2pT

i (0)RRRTqi (7.9)

Therefore

∂li

∂θ
= −pT

i (0)

(

∂RRRT

∂θ

)

qi/li

∂li

∂φ
= −pT

i (0)

(

∂RRRT

∂φ

)

qi/li.

(7.10)

Then one can write down the system with state z and costate λ similar to the one

given in Equation (7.5). Figure 7.5 shows the optimal path and the corresponding

rectus muscle forces.

7.2.3 Case III: Hill-type muscles

Hill-type muscle model is described in detail in Appendix B. Formulation follows

very closely to that of given in Section 7.2.2. Here

τθ =
6∑

i=1

Fi
total

∂li

∂θ

τφ =
6∑

i=1

Fi
total

∂li

∂φ

(7.11)

where

Fi
total = Fi

t − (Fi
act + Fi

pe + Bi
m l̇i).
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Figure 7.4: Optimal path from (π/6, π/6) to (π/10, π/10) for Case II

The terms Ft, Fact, Fpe,Bm above are described in Appendix B and i indexes each

muscle.

According to Equation (B.2), without loosing any generality, one could

minimize the active force in the muscle Fact(t) instead of minimizing the activation

a(t). Therefore the problem beomes one of minimizing

∫ T

0

6∑

i=1

[Fact(t)]
2 dt.

The formulation has the same flavour as the Case II.

Here, l̇i is calculated as

l2
i (t) = (RRRpi(0) − qi)

T(RRRpi(0) − qi)

= pT
i (0)pi(0) + qiq

T
i − 2pT

i (0)RRRTqi

2lil̇i(t) = −2pi(0)ṘRR
T
(t)q

l̇i(t) = −pi(0)ṘRR
T
(t)q/li,

and ṘRR
T

can be obtained using

ṘRR = θ̇
∂RRR

∂θ
+ φ̇

∂RRR

∂φ
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Figure 7.5: θ̇, φ̇ and four rectus muscle forces corresponding to Optimal path from
(π/6, π/6) to (π/10, π/10) for Case II

Figure 7.7 shows the optimal path. Parameters for oblique muscles were chosen

such that they have a very small activity. Figures 7.8, 7.9 show only the corre-

sponding rectus muscle activities.

7.3 Comparison of Lengths of Eye Rotations

Here we present numerical results to compare lengths of minimal eye rotations

with and without the Listing constraint. The length `(σ) of the curve σ(t) is given

by integrating the magnitude of the tangent vector σ′(t) in t as

`(σ) =

∫ b

a

∥
∥
∥
∥
∥
∥
θ̇
∂

∂θ
+ φ̇

∂

∂φ

∥
∥
∥
∥
∥
∥

dt

=

∫ b

a

√

θ̇2g11 + 2θ̇φ̇g12 + φ̇2g22 dt

=

∫ b

a

√

4 sin2(φ/2)θ̇2 + φ̇2 dt.
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Figure 7.6: Optimal path in R3 for Case II
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Figure 7.7: Optimal path from (π/5, π/6) to (π/10, π/10)

In the case when the Listing’s law is observed, we compute the geodesic

distances as well as distances along curves that minimize the energy function

considered in the section 7.2.1 (see Table 7.1).
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Figure 7.8: Lateral and medial rectus muscle activities for Case III

Table 7.1: Comparison of Lengths of Eye Rotations

From To distance (radians)
(θ, φ) (θ, φ) SO(3) Geodesic Min. energy

on List on List

(π
4
, π

6
) (π

8
, π

8
) 0.219 0.222 0.324

(π
4
, π

4
) (π

8
, π

6
) 0.359 0.368 0.368

(π
6
, π

10
) (π

8
, π

4
) 0.476 0.480 0.482
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Figure 7.9: Superior and inferior rectus muscle activities for Case III
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Chapter 8

Conclusions

The best material model of a cat is another,

or preferably the same, cat.

— Norbert Wiener

8.1 Summary

Though the planer eye movement problem has been thoroughly looked at in a

modeling point of view first by Robinson (see [Robinson 1964]) and then by many

others (see [Miller & Robinson 1984, Martin & Schovanec 1998]), there has not

been a successful attempt to model the three-dimensional eye movements. This

is partly because of the clouded interpretations (misunderstandings, rather) of

Listing’s law and the lack of a geometric setting to describe it.

In this dissertation, we have described, in detail, the Riemannian geometry

of the Listing space. An interesting, yet simple local coordinate system is proposed

and the corresponding Riemannian metric is derived. This setting enables one to

clearly state the Listing’s law in a geometric language.

There have been several notable studies on the geometry of eye rotations

in the past (see e.g. [Handzel & Flash 1996], [Haslwanter 1995], [Hepp 1990]

and [Opstal 1988]). In particular, [Handzel & Flash 1996] describes this geometry

using Lie theory, as the quotient space SO(3)/SO(2). However, Listing space,

being a submanifold of SO(3), cannot be naturally identified as this quotient

space. Furthermore, as we point out in section 6.1, Listing space is diffeomorphic

to the real projective space, whereas SO(3)/SO(2) is diffeomorphic to S2. As far as
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we are aware, our study is the first to explicitly describe the Riemannian geometry

of the submanifold (we call it ListListList) of Listing rotations.

Once the geometry of ListListList is clearly understood, we propose and formulate

how the eye movement system can be studied as a simple mechanical control

system ([Smale 1970a, Smale 1970b]). This is described in Chapter 7. This enables

one to use various neuro-muscular models to make it more realistic as described

in Chapter 7. Different control schemes are studied with the eye movement, to

best understand the strategy used by the brain in motor control.

The purpose of such a model is three-folds. One is purely as an academic

exercise. Thorough understanding of human movements is a pathway to better

understand the role of brain in planning, controlling and executing different tasks.

Second, as a clinical utility and scientific validity. As a clinical tool, it can help as-

similate patient data, aiding diagnoses, and clarifying treatment possibilities. As a

scientific hypothesis, such a model can explain many disorders in eye movements.

The third, one could say, in the ever growing area of robotics.

8.2 Future directions

• The fast eye movements known as saccades (see Section 2.2 and Chapter 5)

last for about 40ms. Thus a better approach in the saccadic eye move-

ment control, would be to minimize the time instead of the control input.

Time-optimal control problem could become rather difficult with the higher

dimensionality in control. With six muscles contributing to the movement,

dimension becomes six. The time-optimal problem with only the generalized

torques τθ and τφ as the input, would be a good starting point.

In this case, PMP in Section 4.4, will have the following

L(x, u) ≡ 1,

and
 

(x, λ, u) =
〈
λ, f (x) + u1g1(x) + u2g2(x)

〉
.

Then using PMP one can set

H(x, p) = min
v∈[−K,K]2

 
(x, p, v)
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where u : [a, b] → [−K,K]2. Then one may have to define the switching func-

tions φi(t) =
〈
λ, gi

〉
, i = 1, 2, in order to determine where the controls may

switch for a bang-bang type control considering the vertices of [−K,K]2. This

would lead to an investigation of various bang- type and singular trajectories.

• It would be interesting to compare the model behavior with the actual eye

movement recordings of humans and monkeys (eye movements in monkeys

are believed to obey the Listing’s law as well). Though the recodings for

planer eye movements are well published and readily available (for an ex-

ample, see [Robinson 1964]), such is not the case with three-dimensional eye

movements.

• The Gauss curvature (we found in Section 6.3.3) being a constant on ListListList

is indeed an interesting phenomena. This suggests for a another possible

parameterization of ListListList.

• In our study, we assume that the head is fixed in its position during all the

eye movements. But most of our eye movements are often coupled with the

movements of the head. In the case of the VOR as we discussed in Section 2.2,

eye movement compensates the head movement, when one fixates the gaze

on a target and a stable image is needed on the retina. VOR problem has gain

much momentum in the recent past and it would be interesting to couple

the kinematics and dynamics of the head movement with eye movements.

VOR as well as the smooth-pursuit eye movement (see Section 2.2) provide

the setting to study the tracking problem.
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Appendix A

Quaternion Operations

A.1 Unit quaternions as rotations

Theorem A.1.1. For a unit quaternion q = cos(α/2) + n̂ sin(α/2), the map v → q.v.q−1

represents a simple rotation of a vector v by an angle α about the axis n̂, in Euclidean

3-space.

Proof. The proof requires showing that q.v.q−1 is a vector in R3, and a length-

preserving linear transformation with no reflection component.

To see that q.v.q−1 a vector:

scal(q.v.q−1) = [(q.v.q−1) + (q.v.q−1)−1]/2 (note: q−1 = q0 − (q1

−→
i + q2

−→
j + q3

−→
k ))

= [q.v.q−1 + q.v−1.q−1]/2

= q.scal(v).q−1 = 0.

To see that q.v.q−1 is length preserving:

|q.v.q−1| = |q||v||q−1|
= |q||v||q| = |v|.

To see that q.v.q−1 is a linear transformation:

q.(av + bw).q−1 = (q.av.q−1) + (q.bw.q−1)

= a(q.v.q−1) + b(q.w.q−1).
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To see that n̂ is the rotation axis, we need to show that n̂ is unchanged by the

rotation.

q.n̂.q−1 = (cos(α/2) + n̂ sin(α/2)).n̂.(cos(α/2) − n̂ sin(α/2))

= cos2(α/2)n̂ − sin2(α/2)n̂3

= n̂. ( since n̂2 = n̂.n̂ = −1 and n̂3 = n̂2.n̂ = −n̂).

Let the rotation angle between unit vector v̂ and q.v̂.q−1 be φ. Therefore

cosφ = v̂ � (q.v̂.q−1)

= scal(v̂−1.q.v̂.q−1) (note, for a pure quaternion, i.e., a vector, v̂−1 = −v̂)

= scal(−v̂.(cos(α/2) + n̂ sin(α/2)).v̂.(cos(α/2) − n̂ sin(α/2)))

= scal(cos2(α/2) − sin2(α/2) − (n̂ + v̂.n̂.v̂) sin(α/2) cos(α/2))

Now, v̂.n̂ = −v̂ � n̂ + v̂ × n̂ = v̂ × n̂,

and v̂.n̂.v̂ = (v̂.n̂).v̂ = −(v̂ × n̂) � v̂ + (v̂ × n̂) × v̂ = n̂

Therefore,

cosφ = scal(cos2(α/2) − sin2(α/2) − 2n̂ sin(α/2) cos(α/2))

= cos2(α/2) − sin2(α/2)

= cosα

and the rotation angle φ = α. �

A.2 Quaternion algorithms

A.2.1 Quaternions to rotation matrices

Let q = q0 + q be a unit quaternion and v be a vector in R3. Then the rotation

operator in given in Theorem A.1.1 gives a vector

w = q.v.q−1 = (q0 + q).(0 + v).(q0 − q)

= (2q2
0 − 1)v + 2(q � v)q + 2q0(q × v)

= (q2
0 − |q|2)v + 2(q � v)q + 2q0(q × v)

(A.1)
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Note that

(2q2
0 − 1)v =





(2q2
0
− 1) 0

0 (2q2
0 − 1) 0

0 0 (2q2
0 − 1)









v1

v2

v3





2(q � v)q =





2q2
1

2q1q2 2q1q3

2q1q2 2q2
2 2q2q3

2q1q3 2q2q3 2q2
3









v1

v2

v3





2q0(q × v) =





0 −2q0q3 2q0q2

2q0q3 0 −2q0q1

−2q0q2 2q0q1 0









v1

v2

v3





Therefore





w1

w2

w3





=





2q2
0 − 1 + 2q2

1
2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q2
0 − 1 + 2q2

2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 − 1 + 2q2

3





︸                                                    ︷︷                                                    ︸

rot(q)





v1

v2

v3





(A.2)

with q2
0
+ q2

1
+ q2

2
+ q2

3
= 1.

A.2.2 Rotation matrices to quaternions

An efficient way to determine quaternion components q1, q2, q3, q4 from a matrix

M = rot(q) is to use the entries Mi j. Upon inspection, one can write the following

scheme

A.2.3 Euler angles to quaternion

Out of twelve possible axis conventions, for Euler angles, let’s use the one which

is popular in aeronautics, roll, pitch and yaw. A general rotation is obtained by first

yawing around the z axis by an angle φ, then pitching around the y axis by θ, and

finally rolling around the x axis by ψ. Therefore, the corresponding quaternions
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Table A.1: Rotation matrices to quaternions conversion scheme

q2
0 =

1
4
(1 + M11 + M22 + M33)

q2
0 > 0

True False

q0 =

√

q2
0

q0 = 0

q1 = (M23 −M32)/4q0 q2
1
= 1/2(M22 + M33)

q2 = (M31 −M13)/4q0 q2
1
> 0

q3 = (M12 −M21)/4q0 True False

q1 =

√

q2
1

q1 = 0

q2 = M12/2q1 q2
2
= 1/2(1 −M33)

q3 = M13/2q1 q2
2 > 0

True False

q2 =

√

q2
2

q2 = 0

q3 = M23/2q2 q3 = 0

are

qroll = cos(ψ/2) +
−→
i sin(ψ/2)

qpitch = cos(θ/2) +
−→
j sin(θ/2)

qyaw = cos(φ/2) +
−→
k sin(φ/2).

Multiplying these together in the right order gives the desired quaternion

q = qyawqpitchqroll, with components

q0 = cos(ψ/2) cos(θ/2) cos(φ/2) + sin(ψ/2) sin(θ/2) sin(φ/2)

q1 = sin(ψ/2) cos(θ/2) cos(φ/2) − cos(ψ/2) sin(θ/2) sin(φ/2)

q2 = cos(ψ/2) sin(θ/2) cos(φ/2) + sin(ψ/2) cos(θ/2) sin(φ/2)

q3 = cos(ψ/2) cos(θ/2) sin(φ/2) − sin(ψ/2) sin(θ/2) cos(φ/2)
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Appendix B

Hill-type model of the

musculotendon complex

The Hill-type model [Hill 1938, Zajac 1989] (Figure B.1) used for the musculoten-

don complex, has been shown to incorporate enough complexity while remaining

computationally practical.

The muscle of length lm is in series and off-axis by a pennation angle α

with the tendon of length lt. Here we assume that α = 0. The total length of the

musculotendon complex is ltm. The muscle has two main components: an active

force generator and a parallel passive component. The passive component consists of

a parallel elastic element (Fpe) which describes the passive muscle elasticity and a

damping component which corresponds to the passive muscle viscosity (Bm). The

active component generates the active force for the muscle, which is the product
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Figure B.1: Hill-type model of the musculotendon complex.
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of length-tension relation fl(lm), velocity-tension relation fv(l̇m), and the activation

level a(t) [Zajac 1989]. In utilizing these relationships, analytical expressions that

capture the qualitative properties of the curves will be used. Alternatively, a

natural cubic spline can be fitted when sufficient data is available.

In order to develop curves to describe the attributes of a generic mus-

cle, appropriate scaling is done on the above parameters [Zajac 1989, Martin &

Schovanec 1999]. The scale parameters needed for each musculotendon include:

maximal isometric active muscle force, Fo, optimal muscle length, lo, pennation

angle, αo when lm = lo, and tendon slack length lts. All forces and lengths are scaled

as F̃ = F/Fo and l̃m = lm/lo.

The nonlinear passive muscle force which depends on the muscle length is

commonly expressed as in Equation B.1.

Fpe(lm) =





( kml

kme
)[exp(kme(lm − lms)) − 1] lms ≤ lm < lmc

kpm(lm − lmc) + Fmc lm > lmc

0 otherwise

(B.1)

Here the passive muscle slack length is lms corresponds to a length at which no

force is generated. The transition length from the linear to nonlinear region is lmc

corresponding to the force Fmc.

The total active force generated is quantified as the product of the force-

length and force-velocity curves and the resulting surface is scaled by muscle

activation. Thus the active force is formulated as

Fact = Fo fl(l̃m) fv(ṽm) × a(t) (B.2)

where ṽm = ˙̃lm. Figure B.2 shows the variation of muscle force with muscle length

and velocity.

Muscle activation, a(t), is related to the neural input u(t) via the process

known as contraction dynamics [Zajac 1989]. This process is known to be mediated

through a calcium diffusion and is represented by a first order differential equation

da(t)

dt
+

[
1

τact

(β + (1 − β)u(t))
]

a(t) =
1

τact

u(t) (B.3)

where 0 < β < 1 and τact is an activation time constant that varies with fast and

slow muscle.



73

A B

a(t)=1

Figure B.2: A: Isometric Force-length relation and B: Force-velocity relation, for
muscle with full activation, i.e., a(t) = 1 (Zajac, 1989)

The tendon shown in Figure B as the series elastic element, assumed to

behave non-linearly under minimal extension and then to become linear with

stiffness constant ks beyond a given length ltc associated with a particular level of

resisting force, Ftc. A common approach is to assume a model of the form

Ḟt = Kt(Ft)l̇t (B.4)

where

Kt(Ft) =





kteFt + Ktl, 0 ≤ Ft < Ftc

ks, Ft ≥ Ftc

(B.5)

Equation (B.4) can be integrated to obtain Ft:

Ft(lt) =





ktl

kte
(ekte(lt−lts) − 1), lts ≤ lt < ltc

ks(lt − ltc) + Ftc, lt > ltc

0, otherwise

(B.6)

Therefore, the total force in the muscle

Ft − (Fact + Fpe + Bm l̇m) (B.7)
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Symbols

(0, 2)-tensor field, 31

(  , µ), 28

C∞, 31

IIc, 28

IIξξξ0
, 28

R
4, 24

ξξξ0, 28

δi, j, 32

µ, 28

ΩΩΩ, 29

Q, 26, 27

SO(3), 24

SU(2), 24

(  , µ), 28

ξξξ, 28

RRR, 29

A

abduction, 6

abnormal extremals, 37

activation level, 72

active force, 71

active force generator, 71

adduction, 6

agonist, 7

ambiguity, 11, 43

amplitude, 8

antagonist, 7

antipodal points, 25

assumptions, 44

atlas, 13, 14

axes of rotation, 11

B

ballistic, 8

bang-bang, 66

basis, 16

binocular, 6

biomechanical models, 3

C

center of mass, 28

central nervous system, 7

chart, 13

Christoffel symbols, 22, 49

CNS, 11

cog-wheel, 9

composition, 14

configuration, 4

– manifold, 3, 26

– space, 11

configuration manifold, 27

configuration space

– natural, 43

conjugate momenta, 34

connection, 48

constraints, 3, 27, 35

contravariant order, 17
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control force, 27

coordinate function, 13

coordinates

– change of, 13

cotangent

– bundle, 16, 27

– space, 16

– vector, 17

counterclockwise, 25

covariant order, 17

covector, 27

cubic spline, 72

curvature, 51

– Gauss, 51

curve, 17

D

damping, 71

degrees of freedom, 5

diffeomorphic, 64

differentiable, 14

Donder’s law, 10

Donders, 1

double cover, 24, 25

dynamics, 5

E

eigenvalues, 28

endpoint singular trajectories, 37

energy, 3

– kinetic, 3, 27

– potential, 3

EOM, 1, 7

equivalence class, 45

Euclidean, 12, 14, 25, 67

Euler-Lagrange equations, 33

extremal, 37

extremal synthesis, 37

eye position

– tertiary, 9

eye position

– primary, 9

– secondary, 9

F

falling cat, 31

force, 33

forced Euler-Lagrange equations, 34

fovea, 8

function

– differentiable, 14

– real-valued, 14

G

gaze direction, 3, 7

geodesics, 34, 49

geometric mechanics, 26

Geometry, 4

H

Hamiltonian, 2, 4, 35

Hamiltonian mechanics, 32

Hausdorff, 13

Helmholtz, 1

Hill-type model, 71

holonomic, 3, 36, 43

homeomorphism, 13

homomorphism, 25

I

identity map, 18

inertia, 5

inertia tensor, 28
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infraduction, 6

inverse

– differentiable, 14

isometric submersion, 45

J

Jacobi identity, 19

K

kinematics, 5

kinetic energy, 28

kinetic energy Lagrangian, 33

kinetic energy metric, 31

Kronecker delta, 45

L

Lagrange-D’alembert principle, 34

Lagrangian, 2–4

Lagrangian mechanics, 14

latency, 9

left-invariant, 31

Legendre transform, 35

length-tension relation, 72

Levi-Civita affine connection, 21

Lie bracket, 18

Lie derivative, 18, 19

limb, 5

Listing, 1, 3

Listing’s law, 3, 8, 11, 24, 44

Listing’s plane, 10

local coordinates, 13, 45

– axis-angle, 45

M

manifold, 12

– differentiable, 12, 13

– maximal integral, 35

– topological, 13

map, 16

– differentiable, 14, 16

– induced, 16

mass density, 28

mass distribution, 28

matrices, 3

maximum principle, 3

Maximum Principle, 36

mechanical, 2, 3

mechanics, 2, 3

moment of inertia, 31

muscle viscosity, 71

muscles, 1, 3, 5

– extraocular, 6

– limb, 5

– ocular, 1

musculotendon, 71

N

necessary condition, 37

Newtonian mechanics, 26

nonempty, 14

nonholonomic, 35

nonlinear, 2

nystagmus, 9

O

oblique

– inferior, 6

– superior, 6

one-form, 17, 18

open-loop control, 8

optimal, 4

optimality, 37

orbit, 6



84

orientation, 3, 9, 11

orthogonal, 3

orthonormal frame, 46

P

paracompact, 13

passive component, 71

passive muscle elasticity, 71

pennation, 71

PMP, 36

polar, 45

Potential forces, 34

primary, 3

primary position, 11

principal axes, 28

principal inertia, 28

projection

– tangent bundle, 15

pseudo-Hamiltonian, 37

pullies, 7, 11

pursuit eye movements, 8

Q

quaternion, 12, 23, 44

– conjugate, 24

– dot product, 24

– inverse, 24

– norm, 24

– product, 24

– scalar part, 24

– unit, 25, 67

– vector part, 24

quotient, 64

quotient space, 64

R

real projective space, 64

rectus

– inferior, 6

– lateral, 6

– medial, 6

– superior, 6

retina, 8, 9

retinal, 8

Riemannian, 3

– geometry, 4, 12

– metric, 3, 12, 27

rigid body, 26

ring, 24

– non-commutative division, 24

rotation, 3, 24

rotations, 3

S

saccades, 8

simple mechanical control system, 3,

26

singular, 66

skew symmetry, 19

slack length, 72

slip, 9

stimuli, 9

submanifold, 3, 11

subset, 3

superior colliculus, 7

supranuclear ocular motor control, 7

symmetric, 28

symmetry, 49

T

tangent bundle, 14, 15, 17, 18, 27

tangent vector, 15, 17

tendon, 71
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tendons, 5

tensor field, 17

tertiary position, 11

time-optimal problem, 65

topological space, 12

torsion, 7, 9, 11

U

uniocular, 9

V

variational, 2

variational principal, 32

variational principle of Hamilton, 32

vector field, 17

vector space, 16

velocity vector, 17

velocity-tension relation, 72

vergence, 8

vestibulo-ocular reflex, 8


