
Target Localization and Tracking with Motion
Sensors

Daizhan Chenga, Bijoy K. Ghoshb and Xiaoming Huc

aInstitute of Systems Science, Chinese Academy of Sciences
Beijing 100080, China
dcheng@iss.ac.cn
bDept. of Mathematics and Statistics, Texas Tech University
Lubbock, TX 79409, USA
bijoy.ghosh@ttu.edu
cOptimization and Systems Theory, Royal Institute of Technology
Stockholm, Sweden
hu@kth.se

1 Introduction

Sensor networks provide unprecedented opportunities to sense and monitor
the physical environment, see for example [1] and the references therein. A
sensor network consists of a large number of, possibly heterogeneous, sensor
nodes, deployed over a region of interest. Each node is typically equipped with
limited communication capacity and power supply, and has a variety of sensor
modules such as light, sound, temperature and infra-red.

Intrusion detection and tracking has been a research problem of many
practical applications and has hence attracted quite some attention in the
signal processing and communication community [9, 8, 10, 4, 11]. In most of
the literature, an information theoretic approach is taken for collaborative
signal processing, where, for example, an entropy function is used [8].

In this paper we focus on the problem of target localization and track-
ing with infra-red motion-detection sensors, namely sensors that can detect
motion (velocity) along certain direction. Naturally several such sensors are
needed for localization. Moreover, we develop collaborative localization algo-
rithms based on a control theoretic approach. By the nature of the sensors,
the target has to be in constant motion in order to get detected. Thus the
algorithm needs to handle dynamically the flow of sensor data. In particular,
we take a dynamical system approach to handle measurement noise.

Comparing with the the existing methods, our approach has the following
advantages: (a) Most existing methods would only work with linear sensor
models or are based on linearization. Our approach is based on a nonlinear
model, which eliminates the model approximation (linearization) error that

2 Target Localization and Tracking

would be very significant due to the particular characteristics of the sensors we
consider; (b) unlike most existing methods, which can deal with only particles
(solid bodies) in R2 or R3, we use an n dimensional model, which means that
the objects observed can be a flexible body with n degrees of freedom.

The paper is organized as follows. In Section 2 we formulate the problem
and address some fundamental issues regarding detectability of the target. In
Section 3 some basic tracking algorithms are given. In Sections 4 issues such
as optimal sensor selection, robustness and scalability are discussed. Finally
in Section 5 some experimental results are given.

2 Geometry of the sensor network and detectability

In this section we formulate the tracking problem and discuss the placement
of sensors such that the tracking problem can be solved.

We assume that a flexible target is moving along the trajectory r(t) ∈ Rn,
which means the target is of n degree of freedom.

We consider sensors that measure the target velocity tangential to the
sphere centered at the sensor and with the distance from the sensor to the
target as radius. Such sensors can be made of from, for example, infra-red
arrays. We suppose that a set of sensors are located at si, i = 1, · · · , N in an
initially fixed coordinate system.

Our task is to detect and track the position of the target r(t) based on
sensor readings. For this purpose, we are facing two questions: (1) At least how
many sensors are necessary to determine the position of r(t) of the particle?
(2) How to compute the position via measurements?

We begin by modeling the sensor. For sensor i located at si, let ni = r−si,
ṙni

be the projection of ṙ onto ni, and ṙσ be the component of ṙ perpendicular
to ni. Then,

ṙσ = ṙ − ṙni
= ṙ − 〈ṙ, ni〉 ni

‖ni‖2 (1)

ṙσ is basically what a sensor array can measure. Physically such readings
decay over distance, so we assume the output from sensor i is:

yi =
ṙσ

‖ni‖p
=
‖r − si‖2ṙ − 〈r − si, ṙ〉 (r − si)

‖r − si‖p+2
, (2)

where p is a positive number. For convenience, we call sensors that give (2)
vector sensors. For the time being, we assume the measurement is noise-free.

In particular, when p = 1, we have

yi = θ̇i,

where θi is the angle between r(t)− si and r(t0)− si.
If we assume only the norm of the right hand side of (2) can be measured,

then we have in this case

Target Localization and Tracking with Motion Sensors 3

yi =

[
‖r(t)− si‖2‖ṙ(t)‖2 − 〈r(t)− si, ṙ(t)〉2

]1/2

‖r(t)− si‖p+1
, (3)

where i = 1, · · · , N.
For convenience, we call sensors that give (3) scalar sensors.

Proposition 2.1

1. Generically, n sensors are enough for determining the differential equation
of r(t) (i.e., ṙ(t)) for scalar sensors.

2. In order to reconstruct r(t), at least three vector sensors are necessary, or
at least n + 1 scalar sensors are necessary in Rn.

To prove this proposition we need some preparation:
Lemma 2.2 Let ξi ∈ Rn, i = 1, · · · , n, with ‖ξi‖ = 1, be linearly independent.
If

Ψ =




0 1− < ξ2, ξ1 > · · · 1− < ξn, ξ1 >
1− < ξ2, ξ1 > 0 · · · 1− < ξn, ξ2 >

...
1− < ξn, ξ1 > · · · 1− < ξn−1, ξn > 0


 (4)

is nonsingular, then there exists c ∈ Rn such that Aic, i = 1, · · · , n are linearly
independent, where

Ai = ‖ξi‖2In − ξiξ
T
i , i = 1, · · · , n.

Proof. With linear independence the hyperplane px = b that contains the
ξ′is does not pass through the origin, i.e. b 6= 0, where p is the unique vector
satisfying

〈p, ξi − ξj〉 = 0, i 6= j
〈p, ξi〉 = b, ∀i.

Simply choose c = pT . Then a straightforward computation shows that



cT A1

...
cT An


 =




p− bξT
1

...
p− bξT

n


 .

Suppose there exists α = (α1, · · · , αn)T , such that

n∑

i=1

αi(p− bξT
i) = 0.

Then by right-multiplying both sides by ξi, i = 1, · · · , n, we obtain

Ψα = 0.

4 Target Localization and Tracking

The conclusion follows. 2

Remark 1 It is straightforward to verify that when n ≤ 3 the matrix Ψ defined
by (4) is always nonsingular under the assumptions on ξi, i = 1, · · · , n. But
it is not true for n ≥ 4.
Lemma 2.3 Let ξi ∈ Rn, i = 1, · · · , n, and define Ai as before. Then for a.e
{ξi} (i.e., except a zero-measure set) there exists c ∈ Rn such that {cT Ai} are
linearly independent.
Proof. First, we assume ξi are linearly independent. This property holds except
on a zero-measure set. Next, without loss of generality, we assume ‖ξi‖ =
1. In fact, we can re-scale ξi to ξi/‖ξi‖, which does not change the linear
independence of {cT Ai}.

Finally, we only need to show that det(Ψ) is not identically zero. Then
only on a zero-measure set it can be zero since it is an algebraic equation of
the matrix elements.

To show this we choose orthogonal {ξi}. Then

Ψ =




0 1 · · · 1
1 0 · · · 1
...
1 1 · · · 0


 .

A straightforward computation shows that

det(Ψ) = (−1)i−1(i− 1) 6= 0, i ≥ 2,

which completes the proof. 2

Lemma 2.4 Let ξ 6= 0, and M(ξ) := ξT ξIn − ξξT . Then

rank(M(ξ)) = n− 1. (5)

Proof. Since
M(ξ)ξ = 0,

rank(M(ξ)) ≤ n− 1. But ξξT has 0 as an (n− 1)-multiple eigenvalue, so ‖ξ‖2
is the (n− 1)-multiple eigenvalue of M(ξ). Hence rank(M(ξ)) ≥ n− 1. 2

Proof of Proposition 2.1. Define a set of functions as

F v
i (r, ṙ, t) := ‖r − si‖2ṙ − 〈r − si, ṙ〉 (r − si)− yi‖r − si‖p+2,

F s
i (r, ṙ, t) := ‖r(t)− si‖2‖ṙ(t)‖2 − 〈r(t)− si, ṙ(t)〉2

− (yi(t))
2‖r(t)− si‖2p+2,

i = 1, · · · , N.

We consider the case of using scalar sensors first. Namely, to reconstruct
r(t) is to find r(t) such that F s

i (r, ṙ, t) = 0. It is easy to calculate that

Target Localization and Tracking with Motion Sensors 5

5ṙF
s
i =

[‖r − si‖2In − (r − si)(r − si)T
]
ṙ, i = 1, · · · , N.

We define a set of matrices accordingly as

Ai := ‖r − si‖2In − (r − si)(r − si)T , i = 1, · · · , N. (6)

And denote

Js
F (ṙ) =



5ṙF

sT
1

...
5ṙF

sT
N


 =




ṙT A1

...
ṙT AN


 (7)

Clearly N must be at least equal to n in order for Js
F to have full rank,

we therefore assume N = n.
By Lemma 2.2, Js

F is nonsingular a.e. Then by the implicit function the-
orem we can locally solve ṙ out around ṙ0 as

ṙ(t) = ψ(r, t). (8)

Otherwise, the ODE of r(t) can not be uniquely determined from Fi = 0,
i = 1, · · · , n. Note that solutions however always exist (at lease the one that
is from the real trajectory of the moving target). So multi-solutions of r(t)
exist in this case.

Obviously, there is no way to determine the initial value r(t0) = r0 since
with any initial value the n equations that determine ṙ will be satisfied.

Now for the case of using vector sensors, to reconstruct r(t) is to find r(t)
such that F v

i (r, ṙ, t) = 0. Since

5ṙF
v
i = ‖r − si‖2In − (r − si)(r − si)T , i = 1, · · · , N,

which, according to (i) of above lemma, has rank n − 1. A similar argument
as in the case of using scalar sensors, one sees that a necessary condition is

k(n− 1) ≥ n + 1,

where k is the number of sensors. So when n > 2, k ≥ 2 and for planar case,
k ≥ 3. 2

Next, let us investigate how many sensors are enough for reconstructing
r(t). We focus on the case of scalar sensors, which is more complex. Assume
the differential equation (8) can be solved from n equations Fi(r, ṙ, t) = 0,
i = 1, · · · , n. Next we define

hi(r, ṙ, t) :=

[
‖r(t)− si‖2‖ṙ(t)‖2 − 〈r(t)− si, ṙ(t)〉2

]1/2

‖r(t)− si‖p+1
,

where i = 1, · · · , N. Then from the nonlinear control theory we have the
following:

6 Target Localization and Tracking

Proposition 2.4 N ≥ n+1 sensors are enough to detect r(t) iff the following
system is observable.

{
ṙ(t) = ψ(r, t)
yj = hn+j(r, ψ(r, t), t), j = 1, · · · , N − n.

(9)

Remark 2
• Define

Lψξ = dξψ +
∂ξ

∂t
.

Then the observability of (9) means there exists a T ≥ 0 such that at T the
co-distribution

Ω(T) = Span
{

dLk
ψhn+j‖

∣∣ j = 1, · · · , N − n, k ≥ 0
}

has dimension n. Using small perturbation on sn+j, one sees that the rank
condition of Ω(T) can be satisfied genetically as N = n + 1. So in general,
n + 1 sensors are enough.

• Tracking the “output” yi continuously for a time period is inconvenient.
Particularly, in practical use we have only discrete observing data, so using
the observability to determine the moving trajectory may not be practical. To
observe r(t0) and ṙ(t0) at real time, it is obvious that at least 2n sensors are
necessary.

Finally, we consider the following problem: Assume the locations of sensors
are fixed in advance, when the velocity is detectable via n sensors (a.e)? For
practical purposes, we consider only the cases 1 < n ≤ 3.
Proposition 2.4 In the planar case, the velocity is observable (a.e), iff ξi =
r − si, i = 1, 2 are linearly independent. That is, the object is not moving on
the line of s1s2.
Proof. The necessity can be easily seen from the proof of Proposition 2.1.
We can show the sufficiency by applying Lemma 2.1, since in this case ξ1

and ξ2 satisfy the assumptions of Lemma 2.1 and for n = 2 the matrix Ψ is
automatically nonsingular. 2

Proposition 2.5 In the three dimensional case, the velocity is observable, iff
ξi = r− si, i = 1, 2, 3 are pairwise linearly independent. That is, the object is
not moving on one of the three lines: s1s2, s1s3, or s2s3.
Proof. We only need to show the sufficiency.

Case 1. Assume ξi = r − si, i = 1, 2, 3 are linearly independent. Then
they satisfy the assumptions of Lemma 2.1 and for n = 3 the matrix Ψ is
automatically nonsingular.

Case 2. Assume ξi = r − si, i = 1, 2, 3 are linearly dependent. Since they
are pairwise linearly independent, then we assume that ξ1 and ξ2 are linearly
independent and ξ3 = µ1ξ1+µ2ξ2. Now pairwise linear independence is equiv-
alent to µ1 6= 0, µ2 6= 0. Now we can choose an 0 6= η ∈ (Span{ξ1, ξ2})⊥. Then
ξ1, ξ2, and η are linearly independent.

Target Localization and Tracking with Motion Sensors 7

Choosing x = ξ3 + η/‖η‖ yields

Js
F (x) =



−µ2 < ξ1, ξ2 > ‖ξ1‖2µ2 ‖ξ1‖2

‖ξ2‖2µ1 −µ1 < ξ1, ξ2 > ‖ξ2‖2
0 0 ‖ξ2‖2







ξT
1

ξT
2

ηT /‖η‖




:= A0




ξT
1

ξT
2

ηT /‖η‖


 .

It follows that

det(A0) = µ1µ2

(
< ξ1, ξ2 >2 −‖ξ1‖2‖ξ2‖2

) 6= 0.

2

Remark 3
• Proposition 2.5 applies even when s1, s2, and s3 are on one line, as long

as there are no coincides.
• Proposition 2.5 also suggests that if there are 4 sensors and no any three

are on one line then the velocity is always observable.

3 Target tracking algorithms

In this section we present two algorithms for reconstructing r(t) based on
sensor measurements. The first method is based on solving equation (3). The
second method is based on solving (2) but uses the first method to provide
an estimation of the initial state.

3.1 Basic numerical algorithms and initial localization

For computational ease, we rewrite (3) as

‖x− si‖2‖y‖2 − 〈x− si, y〉2 − ‖x− si‖2p+2b2
i = 0, (10)

Where x = r(t), y = ṙ(x), and bi = yi(t). To simplify the notation, we assume
now p = 1.

The following two methods are used to solve equation (10).

Method 1. Least Square and Gradient Approach

Define the square error, E, as

E =
N∑

i=1

(
‖x− si‖2‖y‖2 − 〈x− si, y〉2 − ‖x− si‖4b2

i

)2

. (11)

8 Target Localization and Tracking

Then we have




∂E
∂x

= 4
N∑

i=1

{[‖x− si‖2‖y‖2 − 〈x− si, y〉2 − ‖x− si‖4b2
i

]
[‖y‖2(x− si)− 〈x− si, y〉 y − 2b2

i ‖x− si‖2(x− si)
]}

∂E
∂y

= 4
N∑

i=1

{[‖x− si‖2‖y‖2 − 〈x− si, y〉2 − ‖x− si‖4b2
i

]
[‖x− si‖2y − 〈x− si, y〉 (x− si)

]}
.

(12)

The iterative equation is
[
xt+1

yt+1

]
=

[
xt + ∆xt

yt + ∆yt

]
, (13)

where

[
∆xt

∆yt

]
=




∂E
∂x

∣∣
(xt,yt)

hx

∂E
∂y

∣∣∣
(xt,yt)

hy


 (14)

with hx and hy as the constant step lengths.
Method 2. Generalized Newton’s Method

Since for the sensor network we assume in most cases N > 2 ∗ n, the
conventional Newton’s method [6] is not applicable. We propose the following
generalized Newton’s method.

Assume we have the following over-determined nonlinear equations

fi(x1, · · · , xn) = 0, i = 1, · · · , N, (15)

where N > n. Like in the standard Newton’s method, we use the following
approximation:

fi(xk+1) ≈ fi(xk) +
∂fi(xk)

∂x
(xk+1 − xk), i = 1, · · · , N. (16)

Assume xk+1 is the solution, i.e., fi(xk+1) = 0, i = 1, · · · , N , we then have

∂fi(x)
∂x

∣∣∣∣
x=xk

(xk+1 − xk) ≈ −fi(xk), i = 1, · · · , N. (17)

Then the least square error solution of (17) is

xk+1 = xk − J+
f (xk)f(xk), (18)

where the pseudo-inverse is defined as

J+
f (x) =

[
JT

f (x)Jf (x)
]−1

JT
f (x) := [gij(x)]

with

Target Localization and Tracking with Motion Sensors 9

Jf (x) =




∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

∂fN

∂x1
(x) · · · ∂fN

∂xn
(x)


 .

We need the following formulas for numerical computation:
{

∂Fi
∂x

= 2
[‖y‖2(x− si)− 〈x− si, y〉 y − 2b2

i ‖x− si‖2(x− si)
]

∂Fi
∂y

= 2
[‖x− si‖2y − 〈x− si, y〉 (x− si)

]
.

(19)

Mimicking the proof for the standard Newton’s method [7], we can derive
the following sufficient condition for the convergence of (18).
Theorem 3.1 If the functions fi(x), i = 1, · · · , N have in a region G sec-
ond order derivatives that are not greater than some L > 0 in the absolute
magnitude, if the matrix

[
JT

f (x)Jf (x)
]

is nonsingular at x0 ∈ G, and if the
following condition is also satisfied:

h = M2LδnN ≤ 1
2

(20)

where ∣∣fi(x0)
∣∣ ≤ δ,

and ∥∥∥J+
f (x0)

∥∥∥ = ‖[gij(x0)]‖ := max
i

N∑

j=1

|gij(x0)| ≤ M,

then the sequence {xk} generated by (18) converges to the least square solution
of (15). Namely,

lim
k→∞

xk = x∗, (21)

where x∗ satisfies

N∑

i=1

f2
i (x) ≥

N∑

i=1

f2
i (x∗), ∀x ∈ G. (22)

We now apply the generalized Newton’s method to our problem. We define

Fi(x, y) = ‖x− si‖2‖y‖2 − 〈x− si, y〉2 − ‖x− si‖4b2
i ,

where i = 1, · · · , N. Then for generalized Newton’s method the iterative equa-
tion becomes

[
xk+1

yk+1

]
=

[
xk

yk

]
− [(JT

F JF)−1JT
F](xk, yk)




F1(xk, yk)
...

fN (xk, yk)


 , (23)

10 Target Localization and Tracking

where

JF =




∂F1
∂x1

· · · ∂F1
∂xn

∂F1
∂y1

· · · ∂F1
∂yn

...
∂FN

∂x1
· · · ∂FN

∂xn

∂FN

∂y1
· · · ∂FN

∂yn


 .

The advantage of the least square approach is that it can converge to a
given isolated solution x∗ as long for the starting point x0 x∗ is the unique
solution inside the searching region

R = {x|E(x) ≤ E(x0)},

and the searching algorithm is proper. Its disadvantage is time-consuming in
general.

The advantage of Newton’s method is its speed, particularly in our case
where the functions involved are only polynomial. The disadvantage is, as
shown in the above, in general for multi-unknown cases the convergence con-
dition is very rigorous. In general, it requires very precise original guess.

Our proposed algorithm can be summarized as follows.

Target Tracking Algorithm:
Step 1. Find initial values: r(0), ṙ(0):

1.1 Choose initial guess: (x̂0, ŷ0) = (α0, β0);
1.2 Choose a step length ∆h and using the gradient method to find (α1, β1),

which minimize square error E;
1.3 Shrink ∆h, for example, ∆h/100 and using (α1, β1) as the initial val-

ues, repeat step 1.2 to find refined optimal solutions (α1, β1). (Such refined
researches can be repeated several times.)
Step 2. Find sequence values: r(t), ṙ(t), where t = k(∆t):

2.1 Choose initial value as
i. Case 1: as k = 0 set [

x̂k

ŷk

]
=

[
α
β

]
,

where (α, β) are obtained in Step 1.
ii. Case 2: as k = 1 set

[
x̂k

ŷk

]
=

[
xk−1 + yk−1∆t

yk−1.

]
.

iii. Case 3: as k > 2 set
[
x̂k

ŷk

]
=

[
xk−1 + yk−1∆t

yk−1 + xk−2xk−1+xk−2
∆t

]
.

2.2 Use Newton’s method to solve (xk, yk) and use square error, E, to stop
the iterative process (as E stops decreasing, stop the iterative process).

Target Localization and Tracking with Motion Sensors 11

3.2 A system theoretic approach to target tracking

In this section we focus on the case of using vector sensors.
As we have discussed before, the output of a sensor can be expressed as

yi =
θ̇i

‖r − si‖p−1
,

where

θ̇i =
(ṙ − ṡi)‖r − si‖2 − 〈ṙ − ṡi, r − si〉 (r − si)

‖r − si‖2 (24)

For the sake of generality, here we do not assume that sensors are fixed in
location. It is well known that the n components of θi are not independent.
It can be merged onto the projective space P (n,R), which is of dimension
n−1. To get a physical decomposition of (24), we use polar coordinate frame.
Denoted by θi = θi(ai

1, a
i
2, · · · , ai

n−1), si = (si
1, s

i
2, · · · , si

n)T , the coordinate
transformation from Cartesian coordinates to polar coordinates is:

x1 − si
1 = r cos(ai

n−1) cos(ai
n−2) · · · cos(ai

2) cos(ai
1)

x2 − si
2 = r cos(ai

n−1) cos(ai
n−2) · · · cos(ai

2) sin(ai
1)

x3 − si
3 = rcos(ai

n−1)cos(a
i
n−2) · · · cos(ai

3) sin(ai
2)

...
xn−1 − si

n−1 = r cos(ai
n−1) sin(ai

n−2)
xn − si

n = r sin(ai
n−1)

(25)

It follows that

tan(ai
k) = ± xk+1 − si

k+1√
(x1 − si

1)2 + · · ·+ (xk − si
k)2

, (26)

where k = 1, · · · , n− 1. We assume ai
k is designed in such a way that the sign

± becomes +. Differentiating both sides of (26) yields

ȧi
k =

(ẋk+1 − ṡi
k+1)Qk − (xk+1 − si

k+1)Pk

Qk+1

√
Qk

, (27)

where

Qj =
j∑

k=1

(xk − si
k)2, Pj =

j∑

k=1

(xi − si
k)(ẋi − ṡi

k).

In the R2 case (by choosing a proper sign) (27) becomes

ȧi
1 =

(x− si
1)(ẏ − ṡi

2)− (y − si
2)(ẋ− ṡi

1)
(x− si

1)2 + (y − si
2)2

(28)

In the R3 case in addition to (28) we have

12 Target Localization and Tracking

ȧ
i
2 =

(ż − ṡi
3)

[
(x− si

1)
2 + (y − si

2)
2]− (z − si

3)P3√
(x− si

1)
2 + (y − si

2)
2

[
(x− si

1)
2 + (y − si

2)
2 + (z − si

3)
2
] (29)

where P3 =
[
(x− si

1)(ẋ− ṡi
1) + (y − si

2)(ẏ − ṡi
3) + (z − si

3)(ż − ṡi
3)

]
.

Note that in the R2 case ai
1 is φ in the polar coordinate frame (r, φ), that is:

x = r cos(φ), and y = r sin(φ); and in R3 case a1 is φ and a2 is θ in (r, φ, θ),
that is, x = r cos(θ) cos(φ), y = r cos(θ) sin(φ), and z = r sin(θ).

Using the method proposed in the previous section we can always solve
for the state (position) and velocity.

However, in order to filter out the effect of measurement errors we propose
the following method.

In fact, from (27) we can derive the following linear equation about ẋ

Eẋ = B (30)

where

E =




−(x2 − si
2)(x1 − si

1) S1 − (x2 − si
2)

2 0
−(x3 − si

3)(x1 − si
1) −(x3 − si

3)(x2 − si
2) S2 − (x3 − si

3)
2

...
−(xn − si

n)(x1 − si
1) −(xn − si

n)(x2 − si
2) −(xn − si

n)(x3 − si
3)

· · · 0 0
· · · 0 0
...
· · · −(xn − si

n)(xn−1 − si
n−1) Sn−1 − (xn − si

n)2




∣∣∣∣∣∣∣∣∣
i=1,··· ,N

(31)

B =




S2ṡ
i
2 − (x2 − si

2)
[
(x1 − si

1)ṡ
i
1 + (x2 − si

2)ṡ
i
2

]
+ ȧi

1

√
S1S2

S3ṡ
i
3 − (x3 − si

3)
[
(x1 − si

1)ṡ
i
1 + (x2 − si

2)ṡ
i
2 + (x3 − si

3)ṡ
i
3

]
+ ȧi

2

√
S2S3

...

Sn−1ṡ
i
n − (xn − si

n)
n∑

k=1

(xi − si
k)ṡi

k + ȧi
n−1

√
Sn−1Sn




(32)

where i = 1, · · · , N. Then the least square solution of (31) provides a differ-
ential equation of the states as

ẋ = (ET E)−1ET B. (33)

Now all the numerical methods for ODE could be used to solve this differ-
ential equation. We can use the target tracking algorithm given in the previous
section for estimating the initial condition.
Remark 4

1. In fact, it is easy to see that (28) implies the anti-clockwise direction
is considered as the increment of a1. Otherwise, negative sign should be
added.

Target Localization and Tracking with Motion Sensors 13

2. (29) implies the positive direction of ai
2 is the same as z − s3. This is

reasonable and coincides with the conventional assumption in polar coor-
dinates.

3. In (31) and (32) the first equation of (30) is expressed in a “uniform
way”. To specify it by using (28), the first rows of E and B, denoted by
E1 and B1 respectively, can be rewritten as

E1 =
[−(x2 − si

2), (x1 − si
1), · · ·] ,

B1 = (x1 − si
1)ṡ

i
2 − (x2 − si

2)ṡ
i
1 + ȧi

1

[
(x1 − si

1)
2 + (x2 − si

2)
2
] (34)

So in the planar case, we have the equations as
[−(y − si

2) (x− si
1)

] [
ẋ
ẏ

]
=

(x− si
1)ṡ

i
2 − (y − si

2)ṡ
i
1 + θ̇i

[
(x− si

1)
2 + (y − si

2)
2
]
,

i = 1, · · · , N.

For numerical purposes we define in R2

F i
1 = (x− si

1)(ẏ − ṡi
2)− (y − si

2)(ẋ− ṡi
1)− ȧs

1

[
(x− si

1)
2 + (y − si

2)
2
]
, (35)

and in R3

F i
2 = (ż − ṡi

3)
[
(x− si

1)
2 + (y − si

2)
2
]− (z − si

3)I3

−ȧi
2

√
(x− si

1)2 + (y − si
2)2

[
(x− si

1)
2 + (y − si

2)
2 + (z − si

3)
2
]
.

(36)

They are alternative expressions of (28) and (29).
Then we have in R2





∂F i
1

∂x = (ẏ − ṡi
2)− 2ȧs

1(x− si
1)

∂F i
1

∂y = −(ẋ− ṡi
1)− 2ȧs

1(y − si
2)

∂F i
1

∂ẋ = −(y − si
2)

∂F i
1

∂ẏ = x− si
1,

(37)

and in R3





∂F i
2

∂x = 2(ż − ṡi
3)(x− si

1)− (z − si
3)(ẋ− ṡi

1)

−ȧi
2

(x−si
1)√

(x−si
1)

2+(y−si
2)

2
S3 − 2ȧi

2

√
(x− si

1)2 + (y − si
2)2(x− si

1)
∂F i

2
∂y = 2(ż − ṡi

3)(y − si
2))− (z − si

3)(ẏ − ṡi
2)

−ȧi
2

(y−si
2√

(x−si
1)

2+(y−si
2)

2
S3 − 2ȧi

2

√
(x− si

1)2 + (y − si
2)2(y − si

2)
∂F i

2
∂z = −I − (z − si

3)(ż − ṡi
3)

−2ȧi
2

√
(x− si

1)2 + (y − si
2)2(z − si

3)
∂F i

2
∂ẋ = −(z − si

3)(x− si
1)

∂F i
2

∂ẏ = −(z − si
3)(y − si

2)
∂F i

2
∂ż = (x− si

1)
2 + (y − si

2)
2 − (z − si

3)
2.

(38)

14 Target Localization and Tracking

Now for vector sensors the components of the angular velocity, ȧi
j , i =

1, 2, 3, j = 1, 2 (j = 1 for planar case) are measurable. So (37) and (38) can
be used directly for the computation of generalized Newton’s method.

4 Sensor selection, robustness and scalability

We begin this section by considering the issue of how to choose and activate
sensors as the target moves. As is discussed in [8], several criteria can be
used for sensor querying and data routing, such as to minimize the number
of active sensors for a given accuracy, to optimize the use of multi-modality
sensor information or to optimally cover the unknown target dynamics.

In this paper we focus on the criterion to choose sensors such that the
observability of the target is assured. Here we only discuss sensor selection for
the case of vector sensors.

With vector sensors, the key for target tracking is that (33) is well de-
fined and easy to integrate numerically. Suppose at the present time sensors
k1, · · · , km are active, and at t = t1 with the estimated target position at
r̃(t1), we want to update the active sensors. We use q1, · · · , qr to indicate the
new active sensors. Then obviously the new sensors should be chosen such
that the E matrix has full rank at r̃(t1). Further more the right hand side
of (33) should not have a big change at the switch of sensors. Thus we can
formulate the sensor switching criterion as follows.

min
q1,··· ,qr

‖ET E(sq1 , · · · , sqr , r̃(t1))− ET E(sk1 , · · · , skm , r̃(t1))‖

s.t. rank E(sq1 , · · · , sqr , r̃(t1)) = n.

In practice, one should of course also add in the range constraints.
Since the key computation in the method is to solve the differential equa-

tion (33), one can expect that the method will be robust with respect to
non-biased noise in the sensor measurements. In practice, one can first use
the least square method to estimate r0, the initial state, then integrate over
(33) to track the target.

With the method introduced in the previous section, when more sensors
are added to the network, computationally it means that more rows are added
to the matrix E in (33). However, the matrix product ET E remains the same
dimension. In fact, more sensors imply easier to compute the inverse of ET E.
Thus, the method is well scalable in this respect. With this method, one can
easily set a threshold on each sensor, as long as the reading from a sensor
is below the threshold, the sensor will be turned off in order to save energy,
which just means that there is an all-zero row in the E matrix.

5 An Experiment

In this section we use one experiment to illustrate our algorithms.

Target Localization and Tracking with Motion Sensors 15

Example 5.1 In this example we show some experimental results done by
using Scatterweb sensor nodes. Since they measure only the magnitude of
motion change, they are the so-called scalar sensors in our definition.

In the experiments four such nodes (only the motion detection system on
each of them is used) are used to observe a Khepera mobile robot moving at
a constant velocity of 0.12 [m/s] along the x-axis. The nodes are positioned
on the vertices of a rectangle of dimension 0.3m× 0.6m. They are all oriented
toward the center. A cubic spline is used to obtain the continuous representa-
tion. The least square approach is applied to estimate the initial value, whereas
the sequence values are computed using the generalized Newton Method. The
square error distribution at the initial time is shown in Figure 1. The origin
is chosen as the initial guess to start the iterative least square process that
converges toward the position marked with a dot. The accuracy of the esti-

−0.1
−0.05

0
0.05

0.1
0.15

0.2 −0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 1. Estimated square error at the initial time.

mated position is best near the middle of the field of view of the sensors. The
estimated velocities in this region are shown in Figure 2. There, the target was
tracked with a maximal error of below 10cm. Figure 3 shows the reconstructed
trajectory at the points where the square error is below a threshold of 10.3cm.
The exact position error is hard to determine as there is significant error in
the positioning of the sensors and, more importantly, in the real trajectory of
the robot. However, in the four test runs the error never exceeded 10cm. As
expected, the Newtons method is much faster than the least square approach.

6 Conclusion

In this paper we studied the problem of target localization and tracking using
network of nonlinear sensors that can only detect the motion of a moving tar-
get, which could be a flexible body of n degrees of freedom. Some fundamental

16 Target Localization and Tracking

3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

t [s]

A
ng

V
el

 [s
−

1]

Sensor 1
Sensor 2
Sensor 3
Sensor 4

Fig. 2. Estimated velocities in the mid field.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x [m]

y
[m

]

Fig. 3. Reconstructed trajectory in the mid field.

properties about higher dimensional target tracking with motion sensors were
studied and some tracking algorithms based on a control theoretic approach
were developed. Because of the nonlinearity of the sensors and the higher di-
mensional objects, the theoretical frame work becomes quite difficult. Thus,
the robustness of the algorithms with respect to measurement noises, which is
a very important aspect of the problem, has to be left for further investigation.

Target Localization and Tracking with Motion Sensors 17

Acknowledgment This work was supported partly by Sida-VR Swedish Re-
search Links Grant 348-2002-6936, partly by NNSF 60736022, and 60821091
of China, and partly by the Gustafsson Foundation.

References

1. Special issue on sensor networks and applications, Proceedings of the IEEE, vol.
91, no. 8, 2003.

2. D. Cheng, B. Ghosh and X. Hu, Distributed Sensor Network for Target Tracking,
Proc. of MTNS 2006, Kyoto, July, 2006.

3. N. Hugi, Target tracking using embedded sensor networks, MS thesis, KTH,
2006.

4. D. Reid, An algorithm for tracking multiple targets, IEEE Trans. Automat.
Contr., vol. AC-24, Dec. 1979, pp. 843-854.

5. Y.Bar-Shalom and X. R.Li, Multitarget-Multisensor Tracking: Principles and
Techniques, Storrs, CT: YBS, 1995.

6. I.S. Berezin, N.P. Zhidkov, Computing Metnods, translated by O.M. Blunn, Vol.
2, Pergamon Press, Oxford, 1965.

7. L.V. Kamtprpvoch, functional analysis and applied mathematics, Funkt-
sional’nyi analiz prikladnaya matematika UMN, Vol. 3, No. 6, 1948.

8. Feng Zhao, Jaewon Shin and J. Reich, Information-driven dynamic sensor col-
laboration, IEEE Signal Processing Magazine, Volume 19, Issue 2, March 2002,
pp 61 - 72.

9. R. Brooks, P. Ramanathan and A. Sayeed, Distributed target classification and
tracking in sensor networks, Proceedings of the IEEE, vol. 91, no. 8, 2003, pp.
1163-1171.

10. F. Zhao, Jie Liu, Juan Liu, J.Guibas and J. Reich, Collaborative signal and
information processing: an information-directed approach, Proceedings of the
IEEE, vol. 91, no. 8, 2003, pp. 1199-1209.

11. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., Mittal,
V., Cao, H., Demirbas, M., Gouda, M., Choi, Y., Herman, T., Kulkarni, S.,
Arumugam, U., Nesterenko, M., Vora, A., Miyashita, M., A line in the sand: A
wireless sensor network for target detection, classification, and tracking, Com-
puter Networks, v 46, n 5, Dec 5, 2004, pp.605-634.

