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a b s t r a c t

Human head movement can be looked at, as a rotational dynamics on the space SO(3) with constraints
that have to do with the axis of rotation. Typically the axis vector, after a suitable scaling, is assumed
to lie in a surface called Donders’ surface. Various descriptions of Donders’ surface are in the literature
and in this paper we assume that the surface is described by a quadratic form. We propose a Tait–Bryan
parametrization of SO(3), that is new in the head movement literature, and describe Donders’ constraint
in these parameters. Assuming that the head is a perfect sphere with its mass distributed uniformly and
rotating about its own center, head movement models are constructed using classical mechanics. A new
potential control method is described to regulate the head to a desired final orientation. Optimal head
movement trajectories are constructed using a pseudospectral method, where the goal is to minimize a
quadratic cost function on the energy of the applied control torques. Themodel trajectories are compared
with measured trajectories of human head movement.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Neurologists, physiologists and engineers have been interested
in modeling and control of the eye since 1845 with notable studies
conducted by Donders (1848), Listing (1845) and von Helmholtz
(1866). Specifically, it has been observed that the oculomotor
system chooses just one angle of ocular torsion for any one gaze
direction (see Donders, 1848). Since its discovery, Donders’ law
has also been applied to the head (see Ceylan, Henriques, Tweed, &
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Crawford, 2000), which is mechanically able to rotate torsionally,
but which normally adopts just one torsional angle for any one
facing direction; see Straumann, Haslwanter, Hepp-Reymond, and
Hepp (1991) and Glenn and Vilis (1992). A geometric consequence
ofDonders’ law is that the three dimensional vectors that represent
the ‘rotation vectors’ of the head are not spread out in a 3-D
volume but instead fall in a single two-dimensional surface known
as Donders’ surface. It has been further proposed, see Glenn and
Vilis (1992), Medendorp, Melis, Gielen, and Gisbergen (1998),
Misslisch, Tweed, and Vilis (1998), Radau, Tweed, and Vilis (1994),
Theeuwen, Miller, and Gielen (1993) and Tweed, Glenn, and Vilis
(1995), that Donders’ law follows what is known as Fick’s strategy.
According to this strategy, Donders’ surface is a saddle-shaped
surface, with non-zero torsional components at oblique facing
directions, obtained by mildly twisting a plane. Donders’ surfaces
of various shapes are shown in Fig. 1, obtained fromexperimentally
recorded head movement data.

We begin by revisiting Donders’ law following the Fick gimbal
strategy (see Fick, 1858). The Fick strategy of human head
movement is to rotate the head in such a way that the line joining
the center of the two eyes remain horizontal at all times, assuming
that the head orientation initially satisfies this constraint. A typical
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(a) Surface 2. (b) Surface 3. (c) Surface 4. (d) Surface 6.

(e) Surface 8. (f) Surface 13.

Fig. 1. Using collected data on human head orientations, six Donders’ surfaces displayed in this figure are obtained by regressing the head orientation points represented
as unit quaternions. The three coordinates are the scaled coordinates q̄1, q̄2 and q̄3 .

gimbal system has two axes of rotations, where the assumption
is that the first axis is fixed and the second axis rotates with the
head, when the head rotates about the first axis. Subsequently,
the head also rotates about the second axis. We assume that
the fixed axis is the vertical axis, which is perpendicular to the
ground and passes through the center of the head. The initial
orientation of the second axis is horizontal and is parallel to the
line joining the two eyes, also passing through the center of the
head. We denote the anticlockwise rotation angle about the fixed
(yaw) axis by φ1, and the anticlockwise rotation angle about the
nested horizontal (pitch) axis by φ2. The roll is assumed to be zero
and the final orientation of the head is a combination of the two
rotations, yaw and pitch. In this paper, the Fick gimbal strategy is
modified by introducing a non-zero roll as a function of yaw and
pitch. Let us consider a third axis, initially along the line of gaze
perpendicular to the vertical and horizontal axes. We assume that
the third axis rotates with respect to the first two axes by angles
φ1 and φ2 respectively. Finally, we assume that the head rotates
anticlockwise by an angle φ3 with respect to the nested third
(roll) axis. A specific rotation in SO(3) can be parameterized by
the three angles φ1, φ2 and φ3, and these are called the Tait–Bryan
angles. Donders’ surface is implemented as a constraint on the
three angles, to be described later in this paper. The yaw, pitch
and roll are respectively the axes 1, 2 and 3 in Fig. 2. This figure
also shows the picture of a generalized gimbal, establishing the
connection.

We present the study of head movement using two control
strategies, potential and optimal control. The potential control
strategy assumes that the muscles actuating the head movement
are guided by an ‘artificial’ potential function, the minimum
of which is adjusted by the final orientation of the specific
head movement maneuver. Likewise, the optimal control strategy
assumes that the three generalized torques on the model of the
head are chosen to minimize a suitably defined quadratic cost
function.2

2 The control variables are the torques that are assumed to be unconstrained.
In practice, these torque commands are generated by neck muscles that are not
considered here.

Using the Tait–Bryan parametrization we simulate head
movement trajectories using a new form of potential control,
the main idea of which has already been introduced by Ghosh
and Wijayasinghe (2012). We also augment the associated Euler
Lagrange’s equation (see Fox, 2010) by adding an appropriate
damping term, and the simulated head movements are compared
with recorded head movement data. The main purpose of this
exercise is to ascertain the control strategy employed by the brain
during head movements. Do we move our heads, driven potentially
or optimally? In this paper, we try to answer this question by
looking at the ‘motion pathways’ and the ‘control signals’ that
generate these paths.

A model of the head movement dynamics is introduced,
satisfying Donders’ constraint. This step is similar to what was
done in Ghosh and Wijayasinghe (2012), except that a new
Tait–Bryan parametrization is considered and a new potential and
damping term is chosen. Our potential control strategy repeats the
essential steps in Ghosh andWijayasinghe (2012), butwe solve the
optimal control problem using pseudospectral methods that are
new to the head movement literature.

Humanheadmovement dynamics, described later in this paper,
is nonlinear and six dimensional. The associated optimal control
problem is exceedingly difficult to solve analytically, and we
implement a pseudospectral method to transform this optimal
control problem into a nonlinear programming problem. This
choice of discretization has many advantages (see Fahroo & Ross,
2001 and Stefanatos, Ruths, & Li, 2010). As a spectral method using
orthogonal functions, the order of approximation (discretization)
necessary to capture the dynamics is significantly smaller than
conventional finite differences or Runge–Kutta techniques. As a
direct collocationmethod,we can include arbitrary constraints and
bounds to restrict both the controls and trajectories of the system.
We use this ability to formulate the dynamics on SO(3) and add a
separate constraint to impose Donders’ surface.

The paper enhances our ongoing study of constructing dynamic
models for eye movement Polpitiya, Dayawansa, Martin, and
Ghosh (2007) and head movement Ghosh and Wijayasinghe
(2012). Earlier, we had used the axis angle parameters (using θ, φ
and α) to describe these dynamics. Although axis angles are quite
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(a) Generalized gimbal frame. (b) Head showing gimbal axes.

Fig. 2. Tait–Bryan angles are φ1, φ2, φ3 where φi is counterclockwise head rotation, with respect to Axis i.

suitable for the purpose, the associated dynamical system on the
space of orientations satisfying Listing’s constraint has a singularity
along the frontal gaze direction. The Tait–Bryan parametrization
(using φ1, φ2 and φ3), proposed here, is better suited in terms of
locations of the associated singularities.3 Using a suitable form of
potential function and a damping term, the paper introduces a new
dynamic model. Choice of this model is natural in the sense that
even when a different coordinate system is chosen, the structure
of the dynamical system is unaltered. Using this proposed dynamic
model for head movement, we drive the head from an initial
to a final orientation and compare simulated trajectories (using
potential and optimal control) with experimentally recorded data
from six human subjects. Such comparisons, we claim, are new in
the literature.

Use of a nonlinear dynamic model enriches our simulations
beyond what has been studied in Neuroscience Angelaki (2004),
Tweed, Haslwanter, and Fetter (1998) and Tweed and vilis
(1987) wherein no systematic comparison between observed and
simulated trajectories is ever made. Significance of this paper is
in the use of a dynamic model arising from classical mechanics
Abraham and Marsden (1978) and Bullo and Lewis (2004). Earlier
studies that had used dynamical systems are linear second order
systems Kardamakis (2009), that ignore the manifold structure of
the underlying space. We would like to speculate that models of
the type proposed here can be applied in ‘Biomimetic control of a
robotic head’ satisfying Donders’ constraints Cannata andMaggiali
(2008).

2. Donders’ surface described by the Fick gimbal

Since every head orientation can be viewed as a point in SO(3),
head movements can be described as trajectories in SO(3), the
space of rotations. Parametrization of points in SO(3) can easily be
obtained from a parametrization of S3, the unit sphere in R4. As
described in Polpitiya et al. (2007), let us assume that the points in
S3 are unit quaternions with a coordinate map4 given by:

ρ : [0, 2π ] × [0, π] ×


−

π

2
,
π

2


→ S3 (1)

where

ρ(θ, φ, α) =


cos

φ

2
, sin

φ

2
cos θ cosα,

sin
φ

2
sin θ cosα, sin

φ

2
sinα


. (2)

3 One can show that the singularities are located precisely when the gaze
directions are ‘looking straight up’ or ‘looking straight down’.
4 Fick rotations are subsequently described using the coordinate map.

Next we consider the surjective 2− 1 map rot from Polpitiya et al.
(2007), between S3 and SO(3) given by

rot : S3 → SO(3). (3)

The image of the composite map ‘‘rot ◦ ρ(θ, φ, α)’’ is a rotation
matrix which rotates a vector in R3 around the axis

(cos θ cosα, sin θ cosα, sinα)T (4)

by a counterclockwise angle φ. Note that when α = 0, the axis (4)
lies in a plane called Listing’s plane. It follows that α is the angle
between the axis of rotation and Listing’s plane and θ is the angle
between the projection of the axis of rotation on Listing’s plane and
the positive x-axis (Axis 2 in Fig. 2).

Remark. The alpha parameters are not subsequently used in this
paper except in describing the coordinate map ρ.

Going back to the Fick strategy for head movements, we can
represent the horizontal rotation about the fixed vertical axis, by
the quaternion

ρ1 = ρ
π

2
, φ1, 0


.

We can also represent the vertical rotation about the nested
horizontal axis, by the quaternion

ρ2 = ρ (0, φ2, φ1) .

The resultant quaternion ρfick is obtained as a quaternion product
(see Altmann, 2005) ρfick = ρ2 ∗ ∗ρ1 given by

ρfick(φ1, φ2)

=


cos

φ1

2
cos

φ2

2
, cos

φ1

2
sin

φ2

2
, sin

φ1

2
cos

φ2

2
, − sin

φ1

2
sin

φ2

2


. (5)

The twoparameter families of quaternions (5) parameterize the set
of all rotation matrices allowed by Fick Gimbals. If we denote

ρfick(φ1, φ2) = (q0, q1, q2, q3)T (6)

the Fick strategy implies that the qi-s satisfy the relation

q0q3 = −q1q2, (7)

and this Donders’ surface has already been introduced in the
literature earlier (see for example Ceylan et al., 2000 and Glenn &
Vilis, 1992). Note that in (5), two of the Tait–Bryan parameters have
been introduced. In fact the roll angle φ3 is assumed to be zero for
Fick gimbals. In Section 4, this assumption is relaxed.
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Table 1
For each of the 6 Donders’ surfaces in Fig. 1, the parameters from Eq. (8) have been
displayed.

Data set h0 2h1 2h2 h11 h22 2h12

2 −0.0087 −0.0611 +0.0628 −0.1434 −0.0067 −2.2738
3 −0.0129 −0.0680 −0.1032 +0.1626 −0.0015 −0.2548
4 +0.0036 +0.0274 −0.0919 +0.2691 +0.1695 −0.4636
6 −0.0010 −0.0201 +0.0148 +0.0151 −0.1667 −2.5346
8 −0.0062 −0.0912 +0.2553 −0.4585 −0.1278 −1.0661

13 +0.0094 −0.0312 +0.0262 +0.5694 +0.1996 −2.4467

3. Donders’ surfaces from human head movement data

We now briefly describe an experimental procedure to collect
human head movement data recorded in conjunction with eye
movement. For complete details on these experiments, we would
refer to Glasauer, Hoshi, Kempermann, Eggert, and Büttner (2003)
and Kremmyda, Glasauer, Guerrasio, and Büttner (2011). Data
was recorded from 6 subjects,5 aged 25–38 years with no known
neurological or orthopedic disorders. For 3D eye movement
recordings, a dual search coil was used on the left eye (Skalar,
Delft, The Netherlands) and for the 3D head movements, two
coils mounted on a head ring at 90° angle between them was
used. Both head and eye coils measured absolute position in the
space. Therefore, when the head was allowed to move, the eye
coil recorded gaze (combined eye and head) movements. When
the head was fixed, gaze and eye movements were identical.
Signals were sampled at 1 kHz. The subjects were seated in
complete darkness inside amagnetic field (Remmel Labs) andwere
instructed to follow a laser dot (size 0.1°, distance 145 cm). Details
on the calibration method are given elsewhere (Glasauer et al.,
2003). Subjects had to follow the target with a combination of
natural eye and head (gaze) movements. The laser dot jumped
randomly between the center and eight peripheral positions by
28°, so that each final position is reached from a different initial
position four times (maximum target jump is 56° horizontally and
vertically). In each position the dot was first visible for 1000 ms,
and then disappeared for 2500 ms and appeared again in the same
position.

The head movement data had been recorded as a temporal
sequence of orientation points, each point represented as a unit
quaternion. A second order Donders’ surface is obtained by least
squares regression6 using the data points. We obtain six Donders’
surfaces (sketched in Fig. 1) of the form

q̄3 = h0 + 2h1q̄1 + 2h2q̄2 + h11q̄21 + h22q̄22 + 2h12q̄1q̄2, (8)

whose parameters are displayed in Table 1. In (8) the scaled
coordinates q̄i are defined as q̄i =

qi
q0
, for i = 1, 2, 3.

4. Tait–Bryan parametrization of Donders’ surface

In this section, we introduce the Tait–Bryan angles (Dunn &
Parberry, 2011; O’Reilly, 2008), given by φ1, φ2, φ3 that generalize
the gimbal coordinates introduced in Section 2. The first two angles
are defined as before (see Sections 1 and 2) for the Fick gimbal.
An additional third angle φ3 measures rotation with respect to a
third axis which is initially orthogonal to the first two axes of head

5 Six subjects are chosen out of a total of 13 subjects recorded, leading up to six
choices of Donders’ surfaces in Fig. 1. The numbering on the surface refers to this
data set. The choice of the surfaces is randomly picked examples and there is no
particular significance in choosing 6 surfaces.
6 A system of linear equation is written on the coefficient space of (8) using the

recorded data q̄i . The coefficients are now calculated using matrix pseudoinverse
(Campbell & Meyer, 1991).

rotation. The instantaneous direction of this third axis is obtained
by rotating it by φ1 with respect to the first axis and by φ2 with
respect to the rotated second axis. Analogous to (5), it turns out
that the resultant quaternion is given by
ρTaBr(φ1, φ2, φ3)

=



sin
φ1

2
sin

φ2

2
sin

φ3

2
+ cos

φ1

2
cos

φ2

2
cos

φ3

2

cos
φ1

2
sin

φ2

2
cos

φ3

2
+ sin

φ1

2
cos

φ2

2
sin

φ3

2

sin
φ1

2
cos

φ2

2
cos

φ3

2
− cos

φ1

2
sin

φ2

2
sin

φ3

2

cos
φ1

2
cos

φ2

2
sin

φ3

2
− sin

φ1

2
sin

φ2

2
cos

φ3

2


. (9)

In the above representation, φ3 = 0 reduces to (5), the quaternion
obtained fromFick gimbals. In general,φ3 is assumed to be nonzero
and we impose Donders’ constraint by restricting φ3 as a function
of φ1 and φ2 in (9).7

We now normalize the above quaternion (9) by dividing each
term by cos φ3

2 and substitute the coordinates in Donders’ surface
(8). This way, we obtain a quadratic equation in tan φ3

2 given by

t tan2 φ3

2
+ s tan

φ3

2
+ r = 0, (10)

where t, s and r are functions of φ1 and φ2, details of which are
in the Appendix. For those angle variables φ1, φ2 for which s2 −

4 t r ≥ 0, we solve φ3 as a function of φ1 and φ2.
When the discriminant is strictly positive, one can solve (10) for

φ3 up to two distinct choices. Since specifying the angles φ1 and φ2
completely specifies the head-pointing direction of the head given
by

ρ1 =

sinφ1 cosφ2 − sinφ2 cosφ1 cosφ2

T (11)
the two choices of φ3 for a given head-pointing direction would
correspond to two distinct orientations.

5. Head movement dynamics with a potential function and
damping

Our goal in this section is to write down a dynamical system for
head movement using the Tait–Bryan parametrization introduced
in Section 4. This is done by introducing an appropriate Lagrangian
formulation, the main ideas of which are already sketched in
Ghosh andWijayasinghe (2012) and Polpitiya et al. (2007). For the
purpose of setting up the notation, we rewrite the main steps as
follows.

Let q(φ1, φ2) be a parametrization,8 of points in S3 that satisfy
Donders’ constraint (10).9 We label this space by DOND and define

G =


qφ1 .qφ1 qφ1 .qφ2
qφ2 .qφ1 qφ2 .qφ2


, (12)

where qγ =
∂q
∂γ

and where γ is either φ1 or φ2. Let X = (φ1, φ2)
T

be the vector of angle variables. As in Polpitiya et al. (2007), we
would define the kinetic energy10 KE as

KE =
1
2

ẊTGẊ . (13)

7 Note that a nonzero φ3 corresponds to a nonzero roll.
8 We obtain this parametrization from (9) by writing φ3 as a function of φ1 and

φ2 given by (10).
9 As evident from Fig. 1, choice of Donders’ constraint would differ from subject

to subject, and this would lead to subject wise variation in the head movement
dynamics.
10 The head is assumed to be a perfect sphere with mass distributed uniformly.
The rotation is assumed to be about the center of the sphere.
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If the potential energy is represented by V , the Lagrangian of the
head movement system can be written as

L = KE − V . (14)

The equation ofmotion onDONDusing the Euler Lagrange equation
can now be described as

d
dt

∂L
∂γ̇

−
∂L
∂γ

= τγ (15)

whereγ is defined as before andwhere τγ is the generalized torque
input to the system. The resulting equations of motion can be
expressed as

GẌ + ĠẊ − ∇XL = Γ , (16)

where Γ = (τφ1 τφ2)
T and where ∇X is the gradient operator

with respect to X defined as

∇X =


∂

∂φ1
,

∂

∂φ2

T

. (17)

5.1. Choice of a potential function

Potential functions are added to the Lagrangian (14) so that
the head movement trajectory can move toward points of least
potential. The potential function we consider in this paper is
described as follows

V (φ1, φ2) = A (1 − |q(φ1, φ2).q0|) (18)

where q0 is a fixed unit quaternion on Donders’ surface and
q(φ1, φ2).q0 represent the dot product of two vectors in R4. It can
be observed that the minima occur at q = q0 or q = −q0. Both of
these minima correspond to a unique point on SO(3) via the map
‘‘rot’’ introduced in (3).

It would follow that with the choice of the potential function
(18), one can steer the head toward the orientation represented
by q = ±q0. Note also that the description (18) of the potential
function does not change for a different choice of coordinates.

5.2. Selection of a damping term

A damping term is added externally using the generalized
torque input Γ , the goal of which is to dampen the movement
of the head so that it quickly comes to a rest at the desired
pointing direction and orientation. An earlier paper Ghosh and
Wijayasinghe (2012) had considered the following form of
damping:

Γ = −K Ẋ,

where K = diag(k1 k2). This choice of the damping term is
coordinate dependent andwemodify the choice of damping to the
following form:

Γ = −c G Ẋ, (19)

where c is an arbitrary constant and G is thematrix defined in (12).
With the choice of damping (19), the EL equation (16) reduces to

G Ẍ + (Ġ + cG) Ẋ = ∇X L. (20)

6. Head movement as a potential control problem

Consider the head movement dynamics on DOND, described by
the EL equation (20). The potential function (18) drives the state
of the head from an initial to a final orientation. One can separate

the contribution of the potential and the damping termand rewrite
(20) as

G Ẍ + Ġ Ẋ −
1
2
ẊT

∇XG Ẋ = Γ̃ (21)

where we write Γ̃ as

Γ̃ = −∇XV − c G Ẋ . (22)
Theheadmovement dynamical systemcannowbe viewed as being
controlled by Γ̃ where the contributions of the potential and the
damping terms can be implemented by a controller. If the goal is
to drive the head to a suitable final orientation, one can choose
an appropriate q0 in (18) and implement the controller (22). This,
in essence, is the potential control problem. We now propose to
extend the potential control formulation (21), (22) as a dynamical
system on S3 (instead ofDOND). Donders’ constraint is additionally
imposed using the Lagrangemultiplier. The details are described as
follows.

Let q(φ1, φ2, φ3) be a parametrization of points in S3 given by
(9). We define a Riemannian metric on S3 computed from a 3 × 3
matrix G, analogous to (12), where qγ =

∂q
∂γ

. Let X = (φ1, φ2, φ3)
T

be the vector of angle variables. As in Polpitiya et al. (2007), we
would define the kinetic energy KE as

KE =
1
2

ẊTG Ẋ . (23)

As in (18), if the potential energy V is chosen as
V (φ1, φ2, φ3) = A (1 − |q(φ1, φ2, φ3).q0|), (24)
where q0 is a fixed unit quaternion in DOND and q(φ1, φ2, φ3). q0
represent the dot product of two vectors in R4, the Lagrangian of
the head movement system can be written as
L = KE − V . (25)
We can impose Donders’ constraint at this point by defining

L̃ = L + λF = KE − V + λF , (26)
where F ≡ 0 is Donders’ constraint (of the kind described in (10))
and λ is the Lagrange multiplier. The equations of motion in S3
subjected to Donders’ constraint can then be derived by using the
Euler Lagrange equations which can be described as

d
dt

∂ L̃
∂γ̇

−
∂ L̃
∂γ

= τγ , (27)

where γ is the angle variables φ1, φ2, φ3 and λ, andwhere τγ is the
generalized torque input to the system and τλ = 0. The resulting
equations of motion can be expressed as

G Ẍ + Ġ Ẋ −
1
2
ẊT

∇XG Ẋ + ∇XV − λ ∇XF = Γ , (28)

where Γ = (τφ1 , τφ2 , τφ3)
T and ∇X is the gradient operator with

respect to X . The definition of the gradient operator is similar to
(17). Eq. (28) can be written in a reduced form as

G Ẍ + Ġ Ẋ − ∇X L̃ = Γ . (29)
As in Section 5.2, we would add a damping term of the form (19)
and write (29) as (21), where we define a new torque Γ̃ as

Γ̃ = λ ∇XF − ∇XV − c G Ẋ . (30)
The system of Eqs. (21), (30) (where the state variable X =

(φ1, φ2, φ3)
T ), together with Donders’ constraint F ≡ 0 provides a

description of a potentially controlled dynamical system for which
the Lagrange multiplier λ(t) can be computed implicitly.11

11 The potential control approach introduced shares the same framework with
equilibrium point hypothesis (EPH), used by a lot of researchers in human motor
control (see for example Feldman & Latash, 2005 and Gomi & Kawato, 1996).
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7. Optimal control using the pseudospectral method

In this section, we reconsider the head movement dynamics
(21), without the assumption that the control Γ̃ is generated
from (30), using a potential function V , a damping term together
with a Lagrange multiplier. These terms are assumed to be absent
from the head movement dynamics and the control Γ̃ is written
as (τφ1 , τφ2 , τφ3)

T . As before, the state vector X is given by
(φ1, φ2, φ3)

T .
For a given T , the optimal control problem we propose to

consider is to drive the state (X, Ẋ) from a given initial value
(X(0), 0) to a given final value (X(T ), 0)while minimizing the cost
function T

0


τ 2
φ1

(t) + τ 2
φ2

(t) + τ 2
φ3

(t)

dt. (31)

The initial and the final values of the state are assumed to lie on
Donders’ surface (10) and the control torques are computed so that
the states evolve on this Donders’ surface as well.12

The absence of the damping term is justified by the fact that, in
the optimal control framework, an undamped response is observed
in simulation to be more costly compared to a damped response.
The absence of the potential term is justified by the fact that
the constraint on the final state is a part of the optimal control
formulation, and hence does not have to be separately imposed
using a potential function.

Redefining the state variables as ξ1 = (φ1, φ2, φ3)
T and ξ2 =

(φ̇1, φ̇2, φ̇3)
T , the EL equation (28) is written as

ξ̇1 = ξ2; G ξ̇2 + Ġ ξ2 −
1
2

ξ T
2 ∇ξ1G ξ2 = τφ . (32)

Donders’ constraint (10) is given by F(ξ1) = 0, where

F(ξ1) = t(φ1, φ2) tan2 φ3

2
+ s(φ1, φ2) tan

φ3

2
+ r(φ1, φ2),

and t, s, r are defined in the Appendix. The boundary conditions
are given by

ξ1(0) = (φ10, φ20, ∗), ξ1(T ) = (φ1T , φ2T , ∗),

ξ̇1(0) = ξ̇1(T ) = (0, 0, 0), ∀ t ∈ [0, T ].

The control τφ is described by the vector (τφ1 , τφ2 , τφ3) of
generalized torques and ∗ denotes a free parameter so that the
initial and final states lie on Donders’ surface (10).

Taken together, the preceding cost function (31), dynamics
(32), and Donders’ state-constraint (10) form an optimal control
problem. While analytical methods (i.e., the maximum principle)
exist to solve such problems, systems of this size and complexity
are typically intractable and, therefore, require computational
methods to solve them (Pontryagin, Boltyanskii, Gamkrelidze, &
Mishchenko, 1962). A variety of numerical methods exist for
solving optimal control problems and can generally be classified
as either direct or indirect. An indirect method finds approximate
solutions to the two point boundary value problem given by
the necessary conditions of the maximum principle. Applying an
indirect method requires first solving for this set of coupled state
and adjoint equations. When working with complex nonlinear
systems, especially those employing nonlinear constraints, this
can be both difficult and tedious. A direct method avoids these
issues by directly discretizing the original problem into a nonlinear
programming problem. Since all variables are physically relevant

12 We remark that Donders’ constraint is implemented directly, while solving the
optimal control problem numerically, and not with the aid of Lagrange’s multiplier,
as has been the case in (26). The Lagrange multiplier is assumed to be 0.

to the problem (contrast this with adjoint variables in indirect
methods), this facilitates adding additional constraints as needed.
For these reasons, we use a direct method to solve for the optimal
torques.

We implement a pseudospectral method to solve the opti-
mal control problem described above. This method relies on ap-
proximation by orthogonal polynomials (in our case we use the
Legendre polynomials), which admits spectral accuracy, similar
to a Fourier approximation for periodic functions (Boyd, 2000).
This type of approach has been used effectively to solve prob-
lems in fluid dynamics, and since then the related concepts have
been successfully applied in a wide variety of domains, including
satellite motion (Fahroo & Ross, 2001) and quantum mechanics
(Stefanatos et al., 2010). The pseudospectral method uses orthog-
onal polynomial expansion to approximate the states and controls
of the system and thereby inherit the spectral accuracy character-
istic of such expansions (Ruths & Li, 2011) (the kth coefficient of
the expansion decreases faster than any inverse power of k Canuto,
Hussaini, Quarteroni, & Zang, 2006). Using recursive properties
unique to certain classes of orthogonal polynomials, e.g. Legendre
and Chebyshev, derivatives of the states can again be expressed in
terms of the orthogonal polynomial expansions, making it possible
to accurately approximate the differential equation that describes
the dynamicswith an algebraic relation imposed at a small number
of discretization points.

The pseudospectralmethod discretizes the continuous cost, dy-
namics, and constraints using interpolation on a set of Gauss–
Lobatto nodes specially selected for near-optimal convergence in
termsof the approximation (Smith, 2006). Using an expression that
relates the k+1 and k terms of the interpolation functions, we can
rewrite the dynamics as an algebraic relation. Leveraging the inter-
polation on the selected nodes in a different way permits a highly
accurate approximation of the integrated cost, using the Gaussian
quadrature (Canuto et al., 2006). For additional details on the com-
putational method, see Boyd (2000).

8. Results

An important result of this paper is displayed in the form of
trajectories sketched in Figs. 3 and 4 using scaled coordinates q̄i =
qi
q0

for i = 1, 2, 3 (see Eq. (6)). For each of the six subjects, from
which the head movement data has been collected, the figures
display how the trajectories generated by the potential and the
optimal controller compare with the recorded head movement
data.13

For each of the six subjects, multiple trajectories have been
picked and the corresponding trajectories are displayed in Fig. 4,
together with the simulated potential and optimal trajectories.
Out of the multitude of trajectories, one specific trajectory has
been picked for each of the six subjects and displayed in Fig. 3.
For ease of display, in Fig. 4 we have used only two of the
three scaled coordinates q̄1, q̄2. Ideally, since the head orientations
satisfy Donders’ constraint (8), it would follow that q̄3 depends
completely on q̄1 and q̄2.

The optimal control torques and trajectories are obtained over
a fixed duration T = 1 with initial and final conditions for (φ1, φ2)
taken from recorded head movement trajectories. The optimal
controller is computed ensuring that the state remains sufficiently
close to Donders’ surface. For the purpose of comparison, the pa-
rameters in the potential control are adjusted so that the final time
is approximately T = 1. This is achieved by choosing the potential

13 Recall that, during data collection, the human subjects directly moved their
head between two pointing directions.
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(a) Surface 2. (b) Surface 3.

(c) Surface 4. (d) Surface 6.

(e) Surface 8. (f) Surface 13.

Fig. 3. One specific head movement trajectory is shown for each of the six Donders’ surfaces in Fig. 1 on the coordinate space q̄1 , q̄2 and q̄3 . The surface indices are indicated
above. Green lines are from the experimentally collected head movement data. Red lines are from the simulated trajectories using potential control (29), (30), where V is
described in (24). Blue lines are from the simulated trajectories using optimal control minimizing (31). Parameters A and c are chosen as 35 and 10, respectively.

control coefficient A in (24) to be 35 and the friction coefficient c
in (19) to be 10.

We calculated the maximum error percentage between the
simulated and the recorded trajectories for each of the trajecto-
ries in Fig. 4. The error is computed as an angle between the corre-
sponding unit quaternion vectors after we have reparameterized
each point of a trajectory as a function of the arc length. Finally,
the error is obtained as a percentage of the angle between the ini-
tial and final unit quaternion vectors. From these errors obtained,
we observed that the percentage ofmaximumerror between simu-
lated and recorded trajectories vary, roughly between 3% and 23%,
where the percentage is calculated with respect to the total angu-
lar deviation between the initial and final points of the trajectory.14
By and large, the maximum error is observed to be less than 2°.

For each of the six cases displayed in Fig. 3, the potential and
the optimal control torques are displayed in Figs. 5 and 6. The three
components of the torques are displayed in three different colors.
The costs of potential and optimal controls are computed, using
(31), for each of the six subjects undergoing ten different head
movement maneuvers, shown in Fig. 4. These results, displayed in
Fig. 7 show that by and large the cost of potential control is about
five times more than the cost of optimal control.

14 Note that while calculating the errors, the temporal dependence of the
trajectories is not looked into. Also higher percentage errors are for shorter
trajectories.

9. Discussions

On viewing the controllers sketched in Figs. 5, 6we observe that
the potential controller takes a relatively large value during the ini-
tial phase of the control action. Themagnitude of the control tapers
off subsequently, receding to the value 0 at the final time T = 1.
The optimal controller, on the other hand, remains relatively active
throughout the time interval [0, 1] and does not approach 0 at the
final time. In practice this would imply that the optimal controller
has a discontinuity at T = 1. In view of its structure, we comment
that the potential controllermimics a PD (proportional–derivative)
controller (Ang, Chong, & Yun, 2005).

The simulated trajectories arising from potential and optimal
controllers differ from the corresponding trajectories recorded
from the head movement data in essentially two ways. First
of all, the simulated trajectories are closely restricted to the
constraint imposed by Donders, whereas the recorded trajectories
are not entirely restricted by Donders’ surface, i.e., there are small
deviations away from the surface. This is evident in Fig. 3. Second,
restricted to Donders’ surface, the simulated data differs from the
recorded data essentially by virtue of the fact that simulated head
movements do not allow for ‘excursions’ during the transition
between initial and final orientations. This is evident when the
trajectories are projected on the (q̄1, q̄2) plane (see Fig. 4, where
the simulated trajectories are ‘almost linear’ whereas the recorded
trajectories dohave someamount of curvature). The curvaturemay
have been introduced artificially when the recorded movement
data was split up into a cascade of trajectories, with initial and
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(a) Surface 2. (b) Surface 3. (c) Surface 4.

(d) Surface 6. (e) Surface 8. (f) Surface 13.

Fig. 4. Headmovement trajectories are shown for six surfaces in Fig. 1. Green lines are the trajectories from the experimentally collected headmovement data. Red lines are
the head movement trajectories using potential control with parameters chosen as in Fig. 3. Blue lines are the head movement trajectories generated using optimal control
minimizing (31). All trajectories are displayed by projecting on to the q̄1q̄2 plane where q̄1 =

q1
q0

and q̄2 =
q2
q0
.

(a) Surface 2. (b) Surface 3. (c) Surface 4.

(d) Surface 2. (e) Surface 3. (f) Surface 4.

Fig. 5. Comparison of torques from the optimal control vs. torques from the potential control for Donders’ surfaces 2, 3 and 4. Blue is τφ1 , Green is τφ2 and Red is τφ3 . Top
figures, left to right are optimal torques from Fig. 3(a)–(c). Bottom figures, left to right are potential torques from Fig. 3(a)–(c).

final pointing directions recognized when the head is observed to
stop momentarily. The curvature may be a result of the subject
hesitating, before settling on a final head pointing direction. The
potential or the optimal trajectories do not capture these effects.15

15 The observed difference between the simulated and the experimentally
observed trajectories may be due to dynamic factors affecting Donders’ surface.
Unfortunately, this fact could not be verified because our data is not rich enough
to capture the dynamics of the surface, if any.

In the headmovement experiments that generated the data, the
generalized torques applied to the head are not directly measured.
Hence it is not possible to compare the actual cost of control with
the cost of controls recorded in Fig. 7. It is however possible to
estimate the generalized torques τφ1 , τφ2 , τφ3 , using the recorded
trajectories of the head orientations and the model (32). For the
trajectories displayed as green lines in Fig. 3, the generalized
torques are computed and plotted in Fig. 8. One should compare
the estimates of the generalized torques in Fig. 8 with the torques
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(a) Surface 6. (b) Surface 8. (c) Surface 13.

(d) Surface 6. (e) Surface 8. (f) Surface 13.

Fig. 6. Comparison of torques from the optimal control vs. torques from the potential control for Donders’ surfaces 6, 8 and 13. Blue is τφ1 , Green is τφ2 and Red is τφ3 . Top
figures, left to right are optimal torques from Fig. 3(d)–(f). Bottom figures left to right are potential torques from Fig. 3(d)–(f).

(a) Surface 2. (b) Surface 3. (c) Surface 4.

(d) Surface 6. (e) Surface 8. (f) Surface 13.

Fig. 7. Values of the cost function (31) for the potential and optimal control are plotted in the y-axis. In the x-axis we have the trajectory index for each of the 10 trajectories
in Fig. 4. The optimal control has been plotted in red whereas the potential control is shown in blue.

obtained in Figs. 5, 6 for the potential and optimal control tasks.
The following points are noted.

Qualitatively, the estimated torques (in Fig. 8) do not asymptot-
ically approach zero,16 i.e., the controls remain active throughout
the time interval as is the case with optimal torques and unlike the
potential torques (in Figs. 5, 6). The costs of the estimated torques,
measured by (31), show that their values are close to the optimal
torques described in Fig. 7 (see Table 2). In some cases the cost of
the estimated torques is less thanwhat is computed for the optimal
torques. This is possibly because the optimal control is derived for

16 Although in some cases they were close to zero.

Table 2
The table shows costs of estimated torques from Fig. 8. The trajectory numbers
correspond to the indices displayed in Fig. 7. Only one trajectory out of ten has been
chosen for each of the six surfaces, as displayed in Fig. 3.

Surface # 2 3 4 6 8 13
Trajectory # 1 8 1 2 3 2
Cost from
(31)

0.0885 0.3481 0.0321 0.0184 0.0166 0.0210

a trajectory restricted entirely onDonders’ surface,whereas the es-
timated torques are derived on a trajectory that often deviates out
of Donders’ surface (see Fig. 3).

None of the six subjects in this paper used potential based
control as evident from the cost of the control signals, which
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(a) Surface 2. (b) Surface 3. (c) Surface 4.

(d) Surface 6. (e) Surface 8. (f) Surface 13.

Fig. 8. Torques computed from recorded head movement data (displayed as green lines in Fig. 3), and the model (32). Blue is τφ1 , Green is τφ2 and Red is τφ3 .

was found to be close to that of the proposed optimal control.
While subjects used a control that generated head movement
trajectories close to both the potential and optimal trajectories, the
estimated control functions differ not only from the predictions
of potential control, but also from those of the optimal control.
It is unclear (and a good question for future research) whether
the differences between the estimated actual control strategy used
by the subjects and the proposed optimal control are due to, for
example, differences in head dynamics or cost function used.17

10. Conclusion

This paper introduces a dynamicmodel of humanhead rotation,
using a newly introduced Tait–Bryan parametrization. The space
of head orientations is viewed as a (Donders’) submanifold
of unit quaternions, endowed with a Riemannian metric. The
movement dynamics is derived by writing the associated Euler
Lagrange’s equation, with a generalized torque as control. The
control problem, we consider, is to drive the orientation vector
from a given initial value to a given final value, staying within the
Donders’ submanifold, while maintaining the time derivative to be
zero at the two boundaries. Two different control strategies are
introduced. In the potential control strategy, the orientation vector
is driven by a gradually reducing potential function, attaining the
zero value at the end point. In the optimal control strategy, the
orientation vector is transferred between the two boundary points
by aminimumenergy controller. A direct, pseudo-spectralmethod
is introduced to derive the optimal controller.

To highlight the main points of this paper, simulated trajecto-
ries using the model we propose closely capture experimentally
observed head movements, except that transient excursions are
not captured. Moreover, the cost of the estimated control, our sub-
jects use, is close to the optimal cost. The paper is inconclusive
about the strategy our brain uses to generate the control signals.

17 One reason why the predicted torques in Figs. 5, 6 are different from the
estimated torque in Fig. 8 is that in our analysis we were ignoring the temporal
profile of the trajectories, concentrating entirely on the spatial variations.
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Appendix

In this section, we derive an explicit expression of t , s and r in
(10) as follows. We choose the four coordinates q0, q1, q2, q3, from
(9) and substitute them in a modified form of (8) given by

q̂0q̂3 = h0q̂20 + 2h1q̂0q̂1 + 2h2q̂0q̂2 + h11q̂21 + h22q̂22 + 2h12q̂1q̂2,

where q̂i =
qi

cos φ3
2
. The functions t, s and r can be readily read off

as follows:

t = h11 cos2


φ2

2


sin2


φ1

2


+

1
2

(h0 + h22

+ (h22 − h0) cos (φ1) − 2h2 sin (φ1)) sin2


φ2

2


−

1
4

(2h1 (cos (φ1) − 1) + (2h12 + 1) sin (φ1)) sin (φ2) ,

s =
1
2

((2h12 − 1) cos (φ2) − cos (φ1) (2h12 + 2h2 sin (φ2) + 1))

+
1
2

(sin (φ1) (2h1 + (h0 + h11 − h22) sin (φ2))) ,

r =
1
4

(h0 + h11 + h22 + cos (φ1) (h0 + h11 − h22

+ (h0 − h11 − h22) cos (φ2))) +
1
4

(2h2 sin (φ1)

+ cos (φ2) (h0 − h11 + h22 + 2h2 sin (φ1)))

+
1
4

((2h1 (cos (φ1) + 1) + (2h12 + 1) sin (φ1)) sin (φ2)) .
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