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Dynamics of Human Head and Eye Rotations
Under Donders’ Constraint
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Abstract—The rotation of human head and the eye are modeled
as a perfect sphere with the rotation actuated by external torques.
For the head movement, the axis of rotation is constrained by a
law proposed in the 19th century by Donders. For the saccadic
eye movement, Donders’ Law is restricted to a law that goes by
the name of Listing’s Law. In this paper, head movement and sac-
cadic eye movement are modeled using principles from classical
mechanics and the associated Euler Lagrange’s equations (EL) are
analyzed. Geodesic curves are obtained in the space of allowed ori-
entations for the head and the eye and projections of these curves
on the space   of pointing directions of the eye/head are shown.
A potential function and a damping term has been added to the
geodesic dynamics from EL and the resulting head and eye trajec-
tories settle down smoothly towards the unique point of minimum
potential. The minimum point can be altered to regulate the end
point of the trajectories (potential control). Throughout the paper,
the restricted dynamics of the eye and the head movement have
been compared with the unrestricted rotational dynamics on SO(3)
and the corresponding EL equations have been analyzed. A version
of the Donders’ Theorem, on the possible head orientations for a
specific head direction, has been stated and proved in Appendix I.
In the case of eye movement, Donders’ Theorem restricts to the
well known Listing’s Theorem. In Appendix II, a constraint on the
angular velocity and the angular acceleration vectors is derived for
the head movement satisfying Donders’ constraint. A statement of
this constraint that goes by the name “half angle rule,” has been
derived.

Index Terms—Donders’ law, Euler Lagrange equation, eye/head
movement, geodesics, half angle rule, Listing’s Law, potential con-
trol, Riemannian Metric.

I. INTRODUCTION

M
ODELING the dynamics of the eye and the head have

been the research goals among neurologists, physiolo-

gists and engineers since 1845. Notable studies were conducted

by Listing [1], Donders [2], and Helmholtz [3] and they claimed

that the orientations of the eye and the head are completely de-

termined as a function of the gaze and the heading directions,

respectively.With the exception of occasional deviation, the eye

follows what is known as the Listing’s Law and likewise the
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head follows a generalization of the Listing’s Law that goes by

the name Donders’ Law.

Eye movement and subsequently the head movement

problem had found a renewed interest towards the later part

of the 20th century [4]–[7]. Initially, the implementation of

Listing’s Law had been the primary focus of interest [8]–[13]. In

spite of several notable modeling studies on three-dimensional

eye and head movements (see [14]–[16] for a detailed review),

there has not been a rigorous treatment of the three-dimensional

head movement problem, in the framework of mechanical con-

trol system and classical mechanics [17]–[19]. In this paper, we

continue to extend the approach of “geometric mechanics” pre-

sented in [20] to the dynamics of the head movement problems.

Our motivation to study this problem is twofold. From the point

of view of Biomechanics, we would like to understand how

eye and head are controlled and coordinated while following

the underlying Listing’s and Donders’ Laws. Our eventual

goal is to focus on the combination of cost functions that are

minimized while controlling gaze. Our second motivation is to

control robotic head/eye (see Cannata [21]) that would follow

these underlying principals. Understanding the principals of

head/eye coordination would eventually help us build robotic

head/eye that are humanlike.

Most of the earlier studies in eye movement have assumed

that the head remained fixed and the eye is allowed to move

freely. It has been observed by Listing (see [9]), that in this

situation the orientation of the eye is completely determined

by its gaze direction. Under Listing’s constraint, starting from

a frontal gaze, any other gaze direction is obtained by a rota-

tion matrix whose axis of rotation is constrained to lie on a

plane, called the Listing’s Plane. Consequently, the set of all

orientations the eye can assume is a submanifold of (see

Boothby [22] for a definition) called . Listing has shown

that in a head fixed environment, eye orientations are restricted

to this specific submanifold (see [20] and [23]).

We study the dynamics, as the head moves spontaneously to-

wards an object following a Listing like constraint that goes

by the name Donders’ constraint [4], [5] and [7]. Donders’ law

states that starting from a frontal head position, any other head

orientation is obtained by a rotation matrix whose axis of rota-

tion is constrained to lie on a two-dimensional surface, called

the Donders’ Surface [7]. Consequently, the set of all orien-

tations the head can assume spontaneously is a submanifold

of called . Intuitively, Donders’ surface is ob-

tained by mildly perturbing the Listing’s Plane along the tor-

sional direction.

In a head free environment, the “axis of eye rotation” often

jumps out of the Listing’s plane during a saccade. We consider

the “head free” case by introducing dynamics of eye-movement,
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as shown in (1) at the bottom of the page, on the unconstrained

orientation space . Even in this case, the orientation of

the eye satisfies Listing’s law, at the beginning and at the end

point of a saccade.

The organization of this paper is as follows. In Section II, we

introduce unit quaternions and motivate the operation of rota-

tion usingmultiplication by unit quaternions (see [24] and [25]).

In Section III, Donders’ constraint is parameterized (following

Tweed [12]) and we observe that Listing’s constraint can be re-

covered as a special case of this parametrization. The spaces

and are defined as a submanifold of .We

state and prove Listing’s Theoremwhich asserts that for all but

one specific gaze direction (viz. the backward gaze direction),

orientation of the eye is completely specified by the gaze direc-

tion. In Section IV, we introduce a Riemannian Metric for the

associated spaces , and and write down

the associated geodesic equations. In Section V, we define a La-

grangian using the Riemannian Metric in Section IV and a suit-

able Potential Energy term, and write down the corresponding

Euler Lagrange Equations (EL).We also add an external “gener-

alized torque” as inputs to the EL equations and this way we ob-

tain a controlled dynamical system. In Section VI, we illustrate

the obtained geodesic equations and the controlled dynamical

system equations by a set of simulations. In these simulations,

the control is either set to zero (see Fig. 4) or chosen to simulate

an appropriate damping (see Figs. 5 and 6). The control system

is regulated by an appropriate choice of a Potential Energy term.

Finally Section VII concludes the paper. In Appendix I, we state

and prove the Donders’ Theorem for head movement which

generalizes Listing’s Theorem (see Section III) for eye move-

ment. In Appendix II, we state and prove the half angle rule

under Donders’ constraint which generalizes the half angle rule

for Listing’s constraint. The half angle rule describes constraints

on the angular velocity vectors and angular acceleration vectors,

when the motion dynamics satisfy Listing’s and Donders’ laws.

II. QUATERNIONIC REPRESENTATIONS

Representation of “eye orientations” using the quaternions

has already been described in [20]. Likewise, the head orien-

tations can also be described using quaternions. In order to set

up the notation, we revisit some of the main ideas in this section.

A quaternion is a four tuple of real numbers denoted by . The

space of unit quaternion is identified with the unit sphere in

and denoted by . Each can be written as

(2)

where , and is a unit vector in

. If is an unit quaternion represented as in (2), using simple

properties of quaternion multiplication, one can show the fol-

lowing ([24], [25]):

“The vector is rotation of the

vector around the axis by a counterclockwise

angle .” The operator is defined to be the vector part of

and corresponds to the coefficients associated with , and

in (2).

To every unit quaternion in , there corresponds a rotation

matrix in (already introduced in [20]) and the correspon-

dence is described by the map

(3)

Note that the map “rot” in (3) is surjective but not . This is

because both and in has the same image. We now write

down a parametrization of the unit vector “n” in (2) as

(4)

Combining (2) and (4), we have the following parametriza-

tion of unit quaternions:

(5)

Using the coordinates we have the following sequence

of maps:

(6)

where (in (5)), and

(7)

The matrix in can be easily written from [20], and has

been described in (1). The points in described by (7) provide

a parameterization of the head (gaze) directions as a function

of the coordinate angles with respect to an initial head

(gaze) direction of , i.e., obtained by rotating the vector

using the rotation matrix .

III. ORIENTATIONS SATISFYING DONDERS’ CONSTRAINT

Donders’ law asserts that the axis of rotation “n” in (4) is re-

stricted to a surface. We shall describe this surface by restricting

(8)

and obtain the axis of rotation as

(9)

(1)
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The parameter is assumed to be a small positive or negative

constant. The choice of (8) as a description of the Donders’ sur-

face is dictated by the following observation made in [12] about

head movement.

When the axis of rotation is horizontal or vertical (i.e.,

when is a multiple of ), head moves without any tor-

sion. At other angles of rotation, there is a gradual increase

in torsion.

Note that the axis of rotation vector lies on a surface given by

(10)

where are the three coordinates of the axis of rotation

given by , , . The

coordinate is constrained by .

The Donders’ law (8) constrains the rotation matrices pa-

rameterized in (1). We define to be the associated sub-

manifold of and to be the associated submanifold of

. They are both two-dimensional submanifolds parame-

terizing all possible rotations in and , respectively, that

satisfy Donders’ constraint (8). The heading direction

is transformed to the direction

by the rotation matrix (1). Thus, we obtain from (6) the fol-

lowing sequence of maps:

(11)

where has been restricted by the Donders’ constraint (8). Note

that the variable in (11) is restricted to the interval ,

whereas in (6) it is restricted to . This is because the images

of and are the same under the map

in (6). Hence, the domain of is chosen to be in (6). The

points and cannot both satisfy the

Donders’ constraint unless . Hence, in (11) the domain

has to be enlarged.

Listing’s constraint is recovered from Donders’ con-

straint by restricting to zero. Listing’s law asserts that the

axis of rotation “n” defined in (4), is restricted to a plane,

called the Listing’s Plane. We shall describe this plane

by restricting and obtain ,

and the

matrix can be obtained from (1). Analogous to the Donders’

constraint, under the Listing’s constraint, we define

to be the associated submanifold of and to be

the associated submanifold of . We have the following

sequence of maps:

(12)

and the following theorem due to Listing.

Theorem 1 (Listing): Under the Listing’s constraint, the map

described by (6) and (12) is one to one and onto.

Remark: Listing’s Theorem 1 asserts that for all but perhaps

one gaze direction given by , which is opposite to

the primary gaze direction , every other gaze direction

completely specifies the rotation matrix.

Proof of Listing’s Theorem 1: Note that when and

, it follows that if satisfies a suitable gaze

direction, then would also satisfy the

same gaze direction. In the domain and

these are the only two choices for a specific gaze vector. It would

follow that when , , and then the pair

of angles in the domain that satisfies a suitable gaze direc-

tion is unique. Hence, these gaze directions correspond to an

unique rotation matrix. It can be checked by direct calculations

that for the pair and the cor-

responding rotation matrix and the gaze vector are identical. Fi-

nally for or , and is arbitrary, the rotation matrix

is the identity matrix and the gaze direction is the primary gaze

direction . It would follow that the only gaze direction

for which the rotation matrix is not unique is when . This

would correspond to the gaze direction , which has

been excluded.

Remark: In Appendix I, we state and prove a generalization

of the Listing’s Theorem 1, for the head movement problem.

We call this theorem the Donders’ Theorem. The upshot of the

theorem is that the number of orientations of the head for a

specific pointing direction is “not unique” when the head fol-

lows the Donders’ Law. For most practical pointing directions

of the head, which includes the frontal hemisphere, the number

of allowed orientations is two (counting multiplicity). For a

simply connected, closed and bounded set of head directions

around the “backward direction” the number of orientations

is four (counting multiplicity). When the parameter , in (8)

approaches zero, the set degenerates to a point, viz. the

backward head direction and we recover the Listing’s Theorem

from Donders’ Theorem. For a specific pointing direction in the

frontal hemisphere, the two ambiguous head orientations merge

to an unique orientation when approaches zero. The relative

sizes of as a function of has been illustrated in Fig. 9.

IV. RIEMANNIANMETRIC ON SO(3), DOND AND LIST

It has been described in [20] that eye rotations are typically

confined to a sub manifold of especially when

the head is restrained to be fixed. Likewise, spontaneous head

movements are typically confined to a sub manifold

of . In order to write down the equations of motion,

one needs to know the kinetic and the potential energies of the

head in motion. The kinetic energy is given by the induced

Riemannian metric on , induced from the Riemannian

metric on .
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The Riemannian metric (see [26]) is derived by assuming that

the head is a perfect sphere and its inertia tensor is equal to

the identity matrix . This is associated with a left invariant

Riemannian metric on , already described in [20]. An

easy way to carry out computation using this Riemannianmetric

is provided by the isometric submersion described in (3) and

(6). In order to compute the Riemannian Metric on , we

write

Then we obtain the inner products given by

and

The Riemannian metric on is given by

(13)

Note that restricted to the Donders’ surface, i.e., when (8) is

satisfied, the Riemannian metric on is given by

(14)

Using the Riemannian metric (13) for , the associated

geodesic equation is given by

(15)

Likewise, using the Riemannian metric (14) for , the

associated geodesic equation is given by

(16)

Restricted to the Listing’s plane, i.e., when , the Rie-

mannian metric on is given by

(17)

and (15) reduces to the following pair of equations, already de-

scribed in [20], given by

(18)

We now state the following theorem, which demonstrates the

geometric structure of the geodesic.

Theorem 2 (Geodesic curves on and ): The

geodesic curves on , given by the integral curves of (15),

projected on via the mapping “proj” described in (6) are cir-

cles. Furthermore, the geodesic curves on , given by the

integral curves of (18), projected on via the mapping “proj”

described in (12) are circles which always pass through a fixed

vector .

Proof of the Geodesic Theorem 2: If we define a new angle

variable

the parametrization of described in (5) would be given by

(19)

Using the angle variables , it is easy to see using the

Riemannian metric (13) on , that the geodesics are great cir-

cles on .What we need to show is that, under the composition

map “proj rot,” described by

”generically the great circles on are projected as circles on

.” We omit the details of the proof but the essential point is

that the great circles on project as planar curves on and

hence generically they are circles (unless the circle degenerates

to a point). When the Listing’s constraint is satisfied, we have

. The parametrization (19) would reduce to

It would follow that great circles on are in fact great circles

on , where is parameterized as

Since, every great circle on passes through the point

, the circle on the gaze space passes through the point

. The gaze corresponding to the point is precisely

.

Remark: If we make the convention that the gaze direction

vector is the frontal gaze direction, it would follow

that the vector is the backward gaze direction.

Listing’s Theorem 1 would then assert that for all gazes other

than the backward gaze, orientation of the eye, restricted to the
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Listing’s submanifold of , is completely specified by the

gaze. It may be inferred from the above geodesic Theorem 2

that the projections of the geodesic curves on the gaze space,

, are circles that always pass through the backward gaze

direction.

Remark: Geodesic curves on are in general not pe-

riodic and does not appear to have a regular geometric shape.

When the initial condition on is assumed to be 0, the pro-

jection of the integral curves of (16) on are circles (shown

in Fig. 3). Interestingly, these circles always pass through the

frontal pointing direction.

V. GENERAL EQUATION OF MOTION ON SO(3)

AND ITS TWO SUBMANIFOLDS

The RiemannianMetric that we have obtained in (14) enables

us to write down an expression for the kinetic energy KE given

by

(20)

Remark: In writing the expression (20) for kinetic energy, we

need to assume that the moment of inertia matrix is an identity

matrix, as would be the case if the eye/head is a perfect sphere

and all rotations are about its center.

In general, the dynamics is affected by an additional potential

energy and an external input torque. Let us consider a general

form of the potential function given by

(21)

which attains a minimum value at a specific pointing direction

.

Remark: Human eye and head orientations have a natural

domain and they are not allowed to move outside this domain. In

an uncontrolled system, one way to implement this would be to

include a potential term to the Lagrangian, with the property

that the potential function is large at points that are disallowed.

Our choice of the term (21) is arbitrary, except that it vanishes

at and takes large values when the eye and the head

are pointed backwards. An interesting question that we have not

answered in this paper is “Does there exist a potential function

that would match observed human eye and head movements?”

The expression for the Lagrangian is given by ,

and the equation of motion is described by

where is the angle variable. Assuming in (21),

the Euler Lagrange’s equation on is given by

where, as in Section III, we continue to assume that satisfies

the Donders’ constraint (8). In order to describe (22) in a com-

pact notation, we define the following set of variables:

(22)

We also define

and rewrite (22) as follows:

(23)

where

In order to write (23) using state variables, we write

and the corresponding state variable equation on is

given by

(24)

where , , and can be defined from (22) and

where the details of has been omitted.

Remark: The underlying control system that governs head

movement satisfying Donder’s constraint is given by (24).

and are generalized torques that are generated by neck

muscle forces acting on the head. For the eye movement

problem, muscle forces generating these torques were modeled

in [20]. For the head movement problem, modeling the muscle

generated forces of the neck muscles, is a subject of future

research.

The state variable equation on can be obtained by con-

sidering and the Riemannian Metric given by (17). As-

suming in (21), the Euler Lagrange’s Equation on

is given by

(25)

The state variable equation on can be obtained by con-

sidering the Riemannian Metric given by (13). These have not

been written down in this paper, since we do not study control

of motion dynamics on .
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Fig. 1. Projection of the geodesic curves from (18) on  !"# plotted on the
gaze space " . The left figure shows the north pole which is the frontal gaze
direction. The right figure shows the south pole which is the backward gaze
direction. The projections are circular passing through the backward gaze.

Fig. 2. Projection of the geodesic curves from (15) on "$ %! plotted on the
gaze space " . Both the left and the right figure show the south pole which
is the backward gaze direction. As opposed to what we found in Fig. 1, each
projection is a circle that do not pass through one fixed gaze and in particular
through the backward gaze.

VI. SOME SIMULATIONS ON GEODESIC AND CONTROL

USING POTENTIAL FUNCTION

In this section, our first goal is to show, using simulation,

the shape of the geodesic trajectories on , and

. To display the shape, we plot the projection of the

trajectories on .

A. Geodesic Trajectories

Example 1.1 (Geodesic Curves for Eye Movement Satisfying

Listing): In this example we solve (18) (corresponds to eye ro-

tation that satisfy the Listing’s constraint). In Fig. 1 we have

plotted the eye directions as a function of time starting from

one suitably chosen initial condition. In plotting the figure, we

have chosen the convention that the identity rotation matrix cor-

responds to the frontal gaze. Our simulation shows that the pro-

jection of the geodesic curve on the gaze space is a circle that

always passes through the backward gaze direction.

Example 1.2 (Geodesic Curves for Eye Movement Not Sat-

isfying Listing): In this example we solve (15) (corresponds to

eye rotation that does not satisfy the Listing’s constraint). We

show in Fig. 2 that the projection of the geodesic curves on the

gaze space are circles that do not necessarily pass through a fixed

point. Fig. 2(a) and (b) are two cases of the simulation assuming

Fig. 3. Projection of the geodesic curves (16) on&$'& plotted on the space
" of pointing directions of the head.When the initial condition on "

 is zero, the
axis of rotation does not change along the integral curves of (16) on&$'&.
For different initial conditions on  the pointing directions of the head rotate in a
circle. (a) Head trajectory when  # $. (b) For  # $, head moves top to bottom
without any torsion. (c) Head trajectory when  # !"%. (d) For  # !"% head
moves right to left without any torsion. (e) Head trajectory when  # !"&. (f)
For  # !"& head moves left/bottom to right/up with torsion.

different initial conditions for . Each figure consists of curves

with different initial choices of and .

Remark: We have seen in Theorem 2 of Section III, that the

geodesics on and are projections of great circles

on . Their projections on the gaze space are also circles

that are plotted in Figs. 1 and 2.

Example 1.3 (Geodesic Curves for Head Movement Satis-

fying Donders): In this example, we solve (16) (corresponds to

head rotation that satisfy the Donders’ constraint). We assume

that the initial condition on is 0. In Fig. 3, we have plotted the

pointing directions of the head as a function of time, starting

from one suitably chosen initial head position, viz. “pointing

straightwithno tilt.”Theplot inFig. 3 is shown for threedifferent

initial conditions on . The trajectories obtained in Fig. 3 are

circles passing through the frontal pointing direction. For initial

conditions on equals 0 or , the axis of rotation is on the

Listing’s plane and the head rotates without any torsion, shown

in Fig. 3(a)–(d). For other initial conditions, viz. , the

axis has torsional component provided by the Donder’s Law (8),

shown in Fig. 3(e) and (f). In this simulation, is chosen as 0.5.

Our next goal is to show that by tuning the parameters and

in (21), we can drive the eye or the head to a suitable end

position and orientation. This has been illustrated in the next

three examples.
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Fig. 4. Gaze motion from (25) for increasing values of the parameter  , with
the external control set to zero, i.e., !  !  !, and the motion is purely
due to the potential function (21), which has a minimum at the frontal gaze.
(a) "  !"#. (b) "  $. (c) "  #. (d) "  #!.

Fig. 5. Gaze motion under the influence of a potential function and a constant
damping term using (25) with !   #

%

$ and !   #

%

%. The value of # is
chosen to be 0.1. (a) "  #. (b) "  #!.

B. Eye/Head Trajectories With a Potential Function

The purpose of this subsection is to demonstrate via simu-

lation that by adding a potential term, one is able to push the

trajectories of the eye or head toward the frontal gaze direction.

Example 2.1 (Eye Motion With a Potential Function But No

Damping): In this example we solve (25) on and display

the gaze trajectories in Fig. 4. We have assumed ,

and in (21). Increasing magnitudes of

has been chosen in Fig. 4(a)–(d). Our simulations show that

with increasingmagnitude of the potential function, the gaze tra-

jectories are restricted to a smaller neighborhood of the frontal

gaze. However, the trajectories are oscillatory.

We now proceed to add a damping term to the motion

equations.

Example 2.2 (Eye Regulation Toward Frontal Gaze Direction

Using a Potential Function and Damping): We repeat Example

2.1 but choose and in (25), in order

to dampen the fluctuations in the trajectories. The results are

plotted in Fig. 5. We observe that the state settles down to the

point of minimum potential, the frontal gaze.

Remark: Eye and head movements are damped in real

system, through the actuating muscles. While modeling mus-

cles, such as in [27] (see also [28]), a passive damping term is

added to the model, which in turn damps the movement. In this

paper we have not modeled damping of the real system, but

introduced a damping term to study the effect of damping on

the trajectories.

Example 2.3 (Head Regulation Toward an Arbitrary Heading

Direction With Two Distinct Orientations): In this example,

we have two head trajectories going to the same pointing di-

rection but with two distinct orientations while satisfying the

Fig. 6. Trajectories of the pointing directions with same initial head orientation
and final head pointing direction. However, the final head orientations for the
two trajectories are different. (a) Two trajectories of head movement from A to
B. (b) Head orientations are shown for two trajectories. The top sequence is for
the bottom trajectory in Fig. 6(a). The bottom sequence is for the top trajectory
in Fig. 6(a).

Fig. 7. For increasing values of &, the head moves a longer distance in a shorter
time. (a) Trajectories of the head direction as & varies from 0 to 1. (b) (Left)
distance as a function of &. (Right) Time as a function of &.

Donders’ constraint. Possibility of two orientations for a given

pointing direction is prescribed by the Donders’ Theorem 3

in Appendix I. We have used the potential function (21) with

and and . The parame-

ters , is chosen for the top tra-

jectory in Fig. 6(a) and , is chosen

for the bottom trajectory in Fig. 6(a). The value of for the

Donders’ constraint is chosen as 0.1309. Fig. 6(b) show the

head direction trajectories for the two paths. Fig. 6(b) shows the

actual head orientations at initial, final and some intermediate

points.

C. Effect of Donders’ Torsional Component on Head

Movement

Example 3 (How Does the Parameter Affect TIME and DIS-

TANCE?): In Fig. 7, we have sketched the head movements

between two specific directions, that are kept fixed for this ex-

ample. In Fig. 7(a), head movements are shown for different

values of in the Donders’ constraint (8). The values of in

(21) are chosen to be 1. We choose and .

Although the paths appear to follow similar profile, in Fig. 7(b),

we show that the total distance, computed using the Riemannian

metric (14), increases with increasing values of . This is under-

standable since there is an extra head rotation for the same head

direction. We also make a surprising observation in Fig. 7(b)

that the time to complete the trajectories fall, as a function of ,

indicating that perhapswith higher levels of torsion, provided by

increasing , the head is able to move rapidly a larger distance

in a shorter time.
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VII. CONCLUSION

In this paper, we study the problem of modeling the rota-

tion of human head, when the head shifts its orientation be-

tween two pointing directions, as a simple mechanical system.

The human eye is a special case of this class of problem. Head

movements obey Donders’ constraint (a generalization of the

Listing’s constraint for eye movement), which states that the al-

lowed orientations of the head are obtained by rotating a fixed

“primary heading direction” by a subclass of rotation matrices.

These rotation matrices have their axes of rotation restricted to

a fixed surface, called the Donders’ surface. Defining a suitable

Riemannian metric, we obtain dynamic model of head move-

ment when the head orientations satisfy the Donders’ constraint

throughout its entire trajectory. Head movements are actuated

by choosing a suitable potential function and the oscillations

are damped by adding a suitable damping term. A similar study

for the eye movement is reported in this paper assuming that the

eye moves while Listing’s constraint is always satisfied. For the

head movement, an important result of this paper is to show the

effect of the torsional component as head is allowed to move

between two “pointing directions.”

Among somewhat more theoretical results, we generalize the

well known Listing’s Theorem 1 which states that for all gaze

directions, “other than one specific backward gaze,” the orien-

tation of the eye is a fixed function of gaze. For the head move-

ment problem, a corresponding Donders’ Theorem has been

stated and proved in Appendix I. The Donders’ theorem states

that for all pointing directions of the head “other than a closed

and bounded region ” that contains the backward head di-

rection, the orientation of the head for a specific “head direc-

tion” is ambiguous up to two alternative orientations (shown in

Appendix I). Additionally—“within the closed and bounded re-

gion , the orientations of the head for a specific gaze direction

is not unique but can have up to four distinct choices.” A sketch

of the set for different values of has been shown in Fig. 9.

Finally, in Appendix II, we obtain a suitable generalization of

the half angle rule for head movement satisfying the Donders’

constraint.

Research presented in this paper can be extended along the

following three areas. Alternative forms of the potential func-

tion (22), chosen somewhat arbitrarily in this paper, can be ex-

plored to match recorded data from eye/head movement trajec-

tories. Using and as the control variables for the dynam-

ical system (25) describing headmovements, one can solvemin-

imum energy and minimum time optimal control problems. Fi-

nally, the same dynamical system (25) can also be used to study

tracking problems, especially to track trajectories of recorded

eye and head movement data.

APPENDIX I

DONDERS’ THEOREM

The question we ask in this appendix is the following:

Given a specific head direction, how many orientations

of the head are allowed while satisfying the Donders’ con-

straint? Equivalently, For the map (11), how many pre-im-

ages does “proj” have?

We now discuss this question as follows:

For a specific pointing direction , where

, what are the possible values of and that will solve

the set of equations

(26)

(Generic Case When and ): Multiplying the first

equation by and the second equation by in (26), we

obtain the following pair of equations:

(27)

From (27) we obtain the following:

(28)

Eliminating from (28), we obtain

(29)

where is given by (8), and is assumed small enough such that

. If is the angle the vector makes with respect

to the positive -axis, we can rewrite (29) as

(30)

We solve (30) by plotting the right-hand side in red and the

left-hand side in blue as has been shown in Fig. 8. The -coor-

dinate is the -axis. The points of intersections are the values

of that solve (30). We have chosen , ,

, and . The parameter

is varied from 0.1 to 0.9. In the top three subfigures of Fig. 8,

the parameter is chosen to be negative, i.e., the head direction

is in the backward hemisphere; for smaller values of (curves

with smaller amplitude) there are four points of intersections;

for larger values of (curves with larger amplitude) there are

two points of intersections. In the bottom three figures of Fig. 8,

the parameter is chosen to be positive, i.e., the head direction

is in the frontal hemisphere; for every value of , the number of

intersection points is two. For each possible choice of , we can

use (28) to calculate the rotation angle .

Theorem 3 (Donders): For a specific pointing direction, (30)

can be solved for up to 2 or 4 alternative solutions, counting

multiplicities. Hence, the number of orientations for a given

pointing directions of the head is either 2 or 4 counting mul-

tiplicities.

Proof of Theorem 3: The generic case when and ,

has already been discussed before. The non generic special cases

are discussed below:

(Special Case When ): In this case, is either 0, ,

or . When , we have , and
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Fig. 8. In this figure we show that  can be solved up to two or four alternative
choices. (a) Back Hemisphere along !  "#!. (b) Back Hemisphere along
!  "#". (c) Back Hemisphere along !  "##. (d) Front Hemisphere along
!  "#!. (e) Front Hemisphere along !  "#". (f) Front Hemisphere along
!  "##.

; when , we have , and .

Finally, when we have , and

and when we have , and .

The rotation matrix (1) is uniquely given by

when or (31)

and

when or (32)

From (31) we infer that when and , the gaze

direction is precisely backwards. There are exactly two distinct

preimages of the mapping “proj” given by

and (33)

(Special Case When ): In this case, it would follow that

. From (27) we would infer that

(34)

We deduce from (34) that and is arbitrary. The rotation

matrix W, given by (1), is trivially the identity matrix.

The main result of Appendix I can be summarized as follows:

For head rotation satisfying Donders’ Law, for a specific head

direction, the head orientation matrix is not necessarily unique

but can be ambiguous up to two or four choices. If is chosen

to be 0.5, we observe graphically in Fig. 8(d)–(f) that for head

direction in the front hemisphere, the head orientation is unique

up to two choices. For head direction in the back hemisphere,

the head orientation is ambiguous up to two choices, until a

threshold, as evidenced by Fig. 8(a)–(c). Closer to the backward

head direction, the number of possible head orientations, for a

specific head direction, splits up to four. This is also evident in

Figs. 8(a)–(c) where we notice that blue curves of lower ampli-

tude intersect the red curve at four distinct points.

Fig. 9. Backward pointing direction of the head is shown as the south pole. The
shaded regions  around the south pole has been sketched for different values
of $. (a) $  $%%. (b) $  $%&. (c) $  $%!.

For different values of in the Donders’ constraint (8), the

threshold has been computed where the number of solutions of

(30) jump from 2 to 4, and has been sketched in Fig. 9. Outside

the shaded region in Fig. 9, the number of solutions of (30) is

precisely 2, counting multiplicity. Inside the shaded region in

Fig. 9, the number of solutions of (30) is no more than 4, and is

precisely 4 almost everywhere.

Example I.1 (Example Indicating Two Alternative Solutions

Under Donders’ Law: In this example we consider Donders’

constraint (8) by selecting . For a specific head direction

vector (0.4330 0.2500 0.8660), we solve (30) and obtain

and to be the two distinct solutions. The

corresponding values of are given by and

. The corresponding orthogonal matrices (1) are given

by

and (35)

Note that the last column of the above two matrices are the same

indicating the pointing direction. The first two columns are the

orientations of the head. The example shows two distinct ori-

entations for the same head direction. Pointing directions for

which the number of distinct solutions of is 4 has not been

considered in this example.

Example I.2 (Potential Control That Transfers Between Two

Orientations of the Head at a Given Fixed Pointing Direction):

In this example, we construct trajectories on the space of

pointing directions of the head that start and end at the same

point. However, the initial and the final point do not correspond

to the same orientation of the head. The trajectories are con-

structed using the potential function (21) assuming

, together with a suitable damping control and

. Starting from a fixed pointing direction, two trajec-

tories have been constructed that start and end at the two corre-

sponding head orientations. The results have been displayed in

Fig. 10. In Fig. 10(a) the blue trajectory is clockwise from left

to right as shown in Fig. 10(b). Correspondingly the black tra-

jectory is anti clockwise from left to right. The extreme left and

right orientations correspond to the same pointing direction of

the head. In this simulation, has been chosen as 0.1309.

Remark: One can conclude from the simulation result dis-

played in Fig. 10 that if Donders’ constraint has to be satisfied
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Fig. 10. Orientation flipping head movement using potential control and sat-
isfying Donders’ constraint. (a) Two trajectories on the space  of pointing
directions of the head. (b) Each of the two trajectories are displayed from left to
right showing the head orientations.

Fig. 11. Figure illustrates the construction of  and  . (a) Plane  con-
taining the angular velocity vectors. (b) Planes  and  are parallel.

throughout the trajectory of head movement, “orientation flip-

ping” would require the head tomove along a cycle. It is unclear,

if such “head movement gaits” have any functional significance.

APPENDIX II

HALF ANGLE RULE

Starting from a specific orientation, in order for the head to

move satisfying theDonders’ constraint (8), the angular velocity

and acceleration vectors have to satisfy a constraint. In fact,

these vectors have to lie in a plane that changes with the moving

head. The “half angle rule,” we consider in this appendix, de-

scribes this moving plane. For the eye movement problem sat-

isfying Listing’s law such a half angle rule is already known

(see [21]). We obtain a generalization of the half angle rule that

would apply to the headmovement problem satisfying Donders’

constraint. Clearly, half angle rule would be an important con-

straint to be satisfied in order for the head orientations to satisfy

Donders’ constraint.

Let us rewrite the unit quaternion (2) as

(36)

where is the axis of rotation given by (9). The time deriva-

tive of can be expressed as (see [29])

(37)

where is a quaternion whose vector part is the

angular velocity of the “head” with respect to a fixed universal

coordinate attached to the “body.” (In case of eye movement,

is the angular velocity of the “eye” with respect to a coordinate

fixed to the “head.”) The formula (37) can be rewritten as

(38)

By computing the derivative of (36), we obtain

(39)

Comparing (38) and (39) we obtain

(40)

and

(41)

Let be a vector perpendicular to the Donders’ surface at .

We have

(42)

Writing

we obtain

(43)

Note that is an orthogonalization of with respect to the

unit “axis of rotation” vector . It follows from (43) that:

The angular velocity vector must belong to a plane

passing through whose normal forms an angle with

respect to the orthogonalized .

Remark: One way to think about generating the plane is

to start from and obtain by orthogonalization. Subse-

quently rotate using the right-hand rule the vector along the

axis by an angle . The obtained vector is orthogonal to

the plane (see Fig. 11(a) for an illustration).

Remark: For the case of eye movement satisfying Listing’s

Law, the vectors and are the same vectors and they are
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equal to . It is straightforward to verify that the angular

velocity vector is given by

So in the case of “Listing,” the vector is explicitly given by

which clearly has an angle with respect to the vector

. We now state the following theorem.

Theorem 4 (Half Angle Rule): A necessary condition for the

axis of rotation vector

to remain inside the Donders’ surface (10) is described as fol-

lows. For each value of , the angular velocity vector must be

confined to a plane passing through whose normal forms

an angle with respect to the vector , where is the or-

thogonalization of with respect to n. Finally, when

the above necessary condition is also sufficient.

Proof of Theorem 4: The necessity of the half angle rule has

already been sketched in (41), (42), and (43). When ,

using (41), it would follow that the implications in (42) can be

reversed. Thus, the half angle rule is also sufficient.

In closing this appendix, we would like to claim that in order

for the Donders’ constraint to be satisfied, the angular accelera-

tion vector must be constrained to an affine plane parallel to .

Let us define

where we have . It follows that the angular accelera-

tion vector satisfies . Note that is the

scalar projection of the vector on the vector normal to the

plane . The acceleration vectors are thus confined to a plane

with the property that its scalar projection on is given by

. It follows that the acceleration vectors lie in a plane

parallel to the plane at a distance (see Fig. 11(b)

for an illustration).

We remark that the vector is perpendicular to and

hence it belongs to the plane . Under the Listing’s constraint,

it has been shown in [21] that the vector is perpendicular to

. It would therefore follow that for this case, and are

the same plane, as already claimed in [21].
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