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Potential and Optimal Target Fixating Control of the Human Head/Eye Complex
Indika Bandara Wijayasinghe, Eugenio Aulisa, Ulrich Büttner, Bijoy Kumar Ghosh,

Stefan Glasauer, and Olympia Kremmyda

Abstract— The human head and eye rotate in coordination
to rapidly project images of stationary targets from the visual
space. Once a target is fixated, the head/eye complex maintains
stability of the image, even while the head continues to move
toward the target. The orientation of the head is constrained by
Donders’ law, whereas the final orientation of the eye satisfies
Listing’s constraint with respect to the final orientation of the
head. The eye is rotated opposite to the movement of the head
to compensate and maintain image stability. Using dynamic
modeling, this brief investigates the underlying target fixating
control mechanisms behind the head and eye movements. Finally,
model output trajectories of the head and eye are compared with
the corresponding experimentally observed trajectories.

Index Terms— Donders’ law, eye movement, head movement,
Listing’s law, optimal control, potential control, target fixation.

I. INTRODUCTION

MODELING and control of the human eye have been
of interest since mid nineteenth century with notable

studies conducted in [1]–[3]. It has been observed [2] that,
when the head coordinates are fixed, the oculomotor system
chooses just one angle of ocular torsion for any one gaze
direction. In particular, the axes of rotations of the eye, away
from the primary gaze direction, always lie on a fixed plane
called the Listing’s plane. It turns out that the head movements
are similarly constrained by the so called Donders’ law [4].
Human head is mechanically able to rotate torsionally, but
normally adopts to just one torsional angle for any one facing
direction [5]–[7]. A geometric consequence of the Donders’
law is that the 3-D vectors that represent the rotational vectors1

of the head are not spread out in a 3-D volume, but instead
fall in a single 2-D surface known as the Donders’ surface.
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1These are the axes of rotation suitably scaled. See Section II of this brief

for a precise definition.

When the head and the eye are both allowed to move freely,
the situation is a bit more complicated [8]. In an attempt to
fixate on a target, eye violates the Listing’s constraint. In doing
so, the eye saccades and may move on to an eccentric position,
ahead of the head. The eye does not stay in that position, but
rotates backward, while the head moves forward, satisfying
Donders’ constraint, toward the target. As the eye recovers
from its initial surge, invariance of the image on the retina is
guaranteed by the eye controller. In other words, forward head
movements are compensated by a backward movement of the
eye.2 In addition, it has been observed that, in the steady state,
when both the head and the eye have momentarily reached a
point of immobility, the ocular torsion is once again close
to zero. It indicates that at the point of immobility, Listing’s
constraint is satisfied.

Using a dynamic model for the head and the eye
movement,3 together with potential and optimal control
methods [10], we simulate the head and the eye movement
control systems as they move to acquire a point target in
space (see [11], [12] for additional recent work on optimal
control of eye-head movements). During the process of target
acquisition, initially the head moves in the same direction
as the eye, and both toward the target. In this brief, no
a priori conjecture is made regarding the head trajectory and
the boundary constraints the head satisfy, except that the head
orientations satisfy Donders’ constraint throughout the entire
trajectory. The eye moves faster than the head and fixates on
the target, choosing non-zero values of ocular torsion during its
movement. The head continues to move past the time when the
target has been fixated. During the post acquisition time, the
eye backtracks the forward head movement (see footnote 2),
until the head and the eye, both comes to rest at zero
ocular torsion. This brief describes results from three different
simulation scenarios on head and eye control.

Simulation 1: We start with trajectories of the human head
and eye constructed out of experimentally observed data.
Using a dynamic model of human head and eye, we track
these observed trajectories using an optimal tracking strategy.

Simulation 2: For each of the experimentally observed head
trajectories, considered in Simulation 1, a suitable boundary
constraint on the head is computed.4 Head trajectories are
now simulated by requiring that the model head starts and
ends at the prescribed boundary points at a prescribed fixed

2We use the convention that forward head movement is a head movement
toward the target. Backward eye movement, on the other hand, is a movement
opposite to the moving direction of the head.

3See [9] for a geometric introduction to the eye and head movement
dynamics.

4At the boundary, the model head is constrained to be on the Donders’
surface closest to the actual orientation of the subject head.
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Fig. 1. Eye and head coordinate systems shown here are from [9]. The two
coordinates are centered at the center of the eye and the head, respectively.
In addition, during our study of the eye/head complex, the centers of the
eye and the head are assumed to be at the same point. (a) Eye coordinate
system, with respect to the moving head, showing the Listing’s plane. (b) Head
coordinate system, with respect to fixed torso, showing the Donders’ surface.

time,5 while the control input to the head movement dynamics
minimizes a cost function. Eye trajectories are simulated
by requiring that the model eye tracks a suitably computed
tracking signal.6

Simulation 3: Boundary constraints on the head are com-
puted as described in Simulation 2. We construct a potential
function that has its minimum at the terminal boundary point.
A potential control is applied to the model head together with
an additional damping term [10], that rotates the head toward
the terminal boundary point. Eye trajectories are simulated by
requiring that the model eye tracks a computed tracking signal
(see footnote 6). The tracking control is derived by introducing
a potential and a damping function as well.

This brief illustrates the role of an eye tracking signal that
the eye needs to track to keep image of the target stationary,
in spite of head movement, once the eye has fixated on the
target. Using experimentally observed data, we confirm the
role of the proposed tracking signal. The tracking controllers
are synthesized using optimal and potential control methods.
This brief compares the simulated head/eye trajectories with
the trajectories constructed from the collected data. In addition,
this brief compares the constructed control signals obtained
from our simulations qualitatively.

II. LISTING’S AND DONDERS’ CONSTRAINTS

We assume a global coordinate system, shown in Fig. 1(b),
fixed with respect to the torso and that the head and the eye
rotate about the center of this system.7 Furthermore, assume
that the head and the eye orientations are observed with

5For all the simulations presented in this brief, the fixed time interval is
chosen to be [0, 1]. The actual time intervals of the trajectories have not been
used.

6Although the objective of this brief is to fixate the eye onto a stationary
target, eye tracking is required to compensate for the moving head.

7The eye movements can additionally be described with respect to the
moving frame shown in Fig. 1(a). This description is particularly useful when
we describe the Listing’s plane.

respect to this coordinate system and that every orientation
is a point in SO(3). Without any loss of generality, the head
is assumed to be initially located at the identity matrix I.
Following [13] and [14], we describe an axis angle coordinate
system on SO(3) using a coordinate map on S3 as follows:

ρ : [0, 2π] × [0, π] ×
[
−π

2
,
π

2

]
→ S3 (1)

where

ρ(θ, φ, α)

= (
cos φ

2 , sin φ
2 cos θ cos α, sin φ

2 sin θ cos α, sin φ
2 sin α

)T
.

(2)

It is a priori unclear why one chooses the angle parameters as
in (2). To see the connection between the chosen parameters
of S3 and SO(3), we consider the map rot from [14], given by

rot : S3 → SO(3). (3)

The image of the composite map rot ◦ ρ(θ, φ, α) is a rotation
matrix [13], which rotates a vector in R3 around the axis8

tan
φ

2
(cos θ cos α, sin θ cos α, sin α)T (4)

by a counterclockwise angle φ. Every point of S3 is considered
as a unit quaternion [15].9 The map rot is a 2 − 1 map
and every unit quaternion q and −q are mapped to the
same rotation matrix in SO(3). The angle parameter vector
(θ, φ, α) can therefore be viewed as a coordinate on SO(3).
The vector (4) is called the rotational vector (see footnote 1).
Note that the scaler tan φ/2 is the magnitude of the rotational
vector.

Donders’ law states that for head rotation, the rotational
vectors (4) lie in a surface that goes by the name Donders’
surface [13]. One way to describe this surface, is to write
the torsion angle parameter α as a function of the other
two parameters θ and φ. Another way is to describe the
surface using the quaternion coordinates of S3. When the
torsion is zero, i.e., when α = 0, the Donders’ surface
reduces to a plane that goes by the name Listing’s plane [14].
The Donders’ surface, in general, is not fixed but changes
from one human subject to another. For example, for the six
subjects considered in this brief, the corresponding Donders’
surfaces are computed from the observed head orientation data,
as described in [10]. We now proceed to describe how the
eye fixates on a stationary point target in space, while both
the head and the eye are free to move, without any a priori
restriction on their axes of rotation.

When a point target is introduced in the visual space,
eye rotates to fixate on the target as quickly as possible.
We assume that this motion takes place in S3, since this
particular eye motion does not satisfy Listing’s constraint.
Let e = [e0, e1, e2, e3]T be the coordinates (unit quater-
nion coordinates) of the target with respect to a fixed
global coordinate system (assumed attached to the torso

8The three coordinates of this axis are the x, y, and z coordinates in Fig. 1.
9The quaternion structure of S3 will be explored later in this section.
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in this brief).10 Furthermore, we assume that m(t) =
[m0(t), m1(t), m2(t), m3(t)]T are the unit quaternion coordi-
nates of the moving head, with respect to the same global
coordinate system. It follows that the coordinates of the target,
with respect to a coordinate system attached to the head, is
given by ξ(t) = m(t)−1· e, where · is the symbol used for
quaternion multiplication (see [16] for a definition). Finally,
we assume that at t = 1, the head comes to a stop. We would
like to choose the orientation component of e in such a way
that ξ(1) satisfies Listing’s constraint.

The following Lemma describes the constraint between
m(1) and e dictated by the Listing’s constraint.

Lemma I: A necessary and sufficient condition for ξ(1) to
satisfy Listing’s constraint is given by

e0m3(1) + e2m1(1) = e1m2(1) + e3m0(1). (5)

Proof of Lemma I: The unit quaternion coordinates of the
target with respect to the moving head coordinates is given by

[m0(t),−m1(t),−m2(t),−m3(t)] · [e0, e1, e2, e3]. (6)

In order for the Listing’s constraint to be satisfied, the last
coordinate of the product in (6) must be zero at t = 1.
The condition (5) easily follows. �

Although the quaternion e is not completely specified by the
direction of the point target, the imposed Listing’s constraint
uniquely specifies the vector ξ(1). The vector e can now be
uniquely obtained as e = m(1) · ξ(1). Consequently, the target
coordinate vector ξ(t), in the moving head coordinates, can
be written as

ξ(t) = m(t)−1 · m(1) · ξ(1). (7)

Remark I: The signal ξ(t) is completely described using
the head trajectory m(t), the final head orientation m(1), and
ξ(1) obtained from the direction of the fixed point target
together with the Listing’s constraint. We conjecture that the
eye control system tracks the signal ξ(t). This will result
in the eye gazing the target with unchanged orientation in
the global torso coordinates and the eye orientation satisfying
the Listing’s constraint at t = 1. Of course, at all time t,
the head coordinates satisfy an additional constraint imposed
by Donders’ law. In this brief, we assume that the Donders’
surface is quadratic and is of the form

m3m0 = h0m2
0 + 2h1m1m0 + 2h2m2m0 + h11m2

1 + h22m2
2

+2h12m1m2 (8)

where the parameters h∗ have been precomputed and are
assumed known. The Donders’ surface parameters are com-
puted for six subjects and reported in [10]. �

Remark II: Computation of m(1) and subsequently ξ(1)
would require that the final orientation of the head is known
ahead of time by the eye controller. The computation of the
tracking signal ξ(t) would additionally require knowledge of
3-D location of the point target, and the instantaneous head

10It is assumed that the target is a point. It would follow that the target
direction, corresponding to the last column of rot(e), is completely specified
by the target direction. Orientation component of e is still ambiguous at this
stage.

Fig. 2. Typical eye and head movement manoeuvres for one of the six
human subjects considered in this brief. The movements are plotted in the
same scale showing that the head movements are smaller than the eye
movements. (a) Experimentally recorded eye trajectory in head coordinates.
(b) Experimentally recorded head trajectory in torso coordinates.

orientation m(t), assumed to be part of a feed forward coupling
between the head and the eye system. How the eye controller
anticipates the head position is unclear. �

Remark III: Eye movement data [Fig. 2(a)] has been
recorded in conjunction with head movement [Fig. 2(b)] from
six subjects, aged 25–38 years with no known neurological
or orthopedic disorders. For 3-D eye movement recordings,
a dual search coil was used on the left eye (Skalar, Delft,
The Netherlands) and for the 3-D head movements, two coils
mounted on a head ring at 90° angle between them was used.
Both head and eye coils measured absolute position in the
space. Therefore, when the head was allowed to move, the eye
coil recorded gaze (combined eye and head) movements. The
subjects were seated in complete darkness inside a magnetic
field and were instructed to follow a laser dot. Subjects had
to follow the target with a combination of natural eye and
head movements. The laser dot jumped randomly between the
center and eight peripheral positions, so that each final position
is reached from a different initial position (see Fig. 2 for the
laser dot movements corresponding to the eye and the head).
For complete details, we would refer to [17] and [18]. For
the head and the eye movement data from six subjects, we
display in Table I (left) the extent to which Donders’ law is
satisfied by the actual head movement trajectories [see the first
column of Table I (left)], and in Table I (right) the extent to
which Listing’s law is satisfied by the final eye orientation
[see the first column of Table I (right)], when the subject has
fixated on the target and the eye and the head have come to
rest. The point of showing the two tables is to emphasize that
the two physiological constraints stemming from Donders and
Listing are closely supported by observed data.11 �

III. HEAD/EYE MOVEMENT DYNAMICS

The head and the eye movement trajectories are simulated
using a dynamical system, constructed from an appropriate
Lagrangian formulation, the main ideas of which are already
sketched in [13] and [14]. We rewrite the main steps using
coordinates (θ, φ, α) from Section II. Let ρ(θ, φ, α) be a
parametrization of the manifold S3 as in (2). A Riemannian
metric on S3 can be written using the matrix given by

G =
⎛
⎝

ρθ .ρθ ρθ .ρφ ρθ .ρα

ρφ .ρθ ρφ .ρφ ρφ .ρα

ρα .ρθ ρα .ρφ ρα .ρα

⎞
⎠ (9)

11In the other columns of the two tables, we show that for the optimal
and the potential controllers that we have implemented later in this brief, the
Donders’ and the Listing’s constraints are closely enforced.
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TABLE I

LEFT: FOR EACH SUBJECT, MAXIMUM ABSOLUTE VALUE OF THE

DONDERS’ ERROR, IN RADIANS, ARE DISPLAYED BY TAKING

AVERAGE OVER ALL THE HEAD TRAJECTORIES. RIGHT:

FOR EACH SUBJECT, ABSOLUTE VALUE OF THE FINAL

LISTING’S ERROR, IN RADIANS, ARE DISPLAYED

BY TAKING AVERAGE OVER ALL THE

EYE TRAJECTORIES

where ργ = ∂ρ/∂γ and dot in (9) is the vector dot product.
Let us define X = (θ, φ, α)T to be the vector of angle
variables. As in [14], we define the kinetic energy12 KE as

KE = 1

2
Ẋ T G Ẋ . (10)

If the potential energy is represented by V , the Lagrangian of
the head movement system can be written as

L = KE − V . (11)

The equation of motion on the Donders’ surface, using the
Euler Lagrange equation can now be described as

d

dt

∂L

∂γ̇
− ∂L

∂γ
= τγ (12)

where γ can be the angle variable θ , φ, or α and where
τγ is the generalized torque input (to be viewed as the control
input) to the system. The resulting equations of motion can be
expressed as

G Ẍ + Ġ Ẋ − 1

2
Ẋ T ∇X G Ẋ + ∇X V = � (13)

where � = (τθ τφ τα)T and where ∇X is the gradient
operator with respect to X defined as

∇X =
(

∂

∂θ
,

∂

∂φ
,

∂

∂α

)
. (14)

Remark IV: In this brief, the potential energy term V is
assumed to be identically zero, when we are looking at optimal
control problems. On the other hand, when the control is
potentially driven, the potential energy term V is present.
We also add a suitable damping term to the equations of
motion (13), to asymptotically stabilize the state vector around
the point where V is minimum. �

IV. TRACKING AND OPTIMAL ROTATION OF

HUMAN HEAD AND EYE

We begin this section recalling from Remark I that, in order
for the eye orientations to satisfy Listing’s constraint when the

12 Up to a scale factor, the kinetic energy has the form (10) for both the
eye and the head.

head and the eye comes to a stop, while the eye is gazing at the
target in spite of prior head movements, the eye has to track
a trajectory ξ(t). We now describe three simulation scenarios,
already introduced in Section I.

A. Simulation I: Head and Eye Tracking an Observed
Trajectory (Optimal Tracking Strategy)

Assume that the dynamics of the head or eye is given by13

G Ẍ + Ġ Ẋ − 1

2
Ẋ T ∇X G Ẋ = �. (15)

We would like to rewrite the dynamics (15) as

Ẍ + G−1Ġ Ẋ − 1

2
G−1 Ẋ T ∇X G Ẋ = �1 (16)

where

�1 = G−1�. (17)

For both, the head and the eye, we consider a cost function
given by

J =
∫ 1

0

δ

2
�T

1 �1 + β

2
CT C + pT (

F − Ẍ
)

dt (18)

where Ẍ = F is the motion dynamics (16), C = (A(t) − X)
and A(t) is the trajectory to track.14 The function p(t) is the
Lagrange multiplier. The trajectory A(t) has been obtained
from observed head and eye trajectory data. The parameters
for the cost function (18) are chosen as follows: δ = 2,
β = 2×106 (for the head and the eye dynamics). An artificially
high value of β is chosen to obtain a near perfect tracking.
The initial and final orientations of the head and the eye
are chosen to match the corresponding observed orientations.
Boundary conditions are prescribed by choosing the vector
(X (0), Ẋ(0), X (1), Ẋ(1)).

Remark V: Instead of using the generalized torque vector �
in the cost function (18), we have chosen �1, which is obtained
by scaling � by the matrix G. We would like to remark that
the optimal control problem (16) and (18) is scale invariant,
in the sense that if G is scaled by a constant scale factor υ,
the control � is likewise scaled, while the dynamics (16) and
the cost function (18) remain unaltered. Hence, the relative
weights of control energy and tracking error in the cost func-
tion (18) does not change. The model can therefore be used for
both, the eye and the head, which differ from each other by a
scale factor in G, referred to in footnote 12. �

Remark VI: It is possible to replace the vector �1 by
a physically meaningful externally applied resultant torque
vector T in the cost function (18), as has been suggested
in [19]. One can show [9], that

‖T ‖2 = 1

4
�T

1 G�1. �

The Hamiltonian [14] for this problem is defined as

H = δ

2
�T

1 �1 + β

2
CT C + pT F. (19)

13The model (15) can be used interchangeably for the eye or head. For the
eye/head complex, two copies of this model is used.

14The term CT C in the cost function forces the state X to track the
signal A(t).
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Using this notation, we write

J =
∫ 1

0

[
H − pT Ẍ

]
dt . (20)

Applying the principle of variation, we obtain the following
set of Hamilton’s equations:

Ẍ = ∂ H

∂p
= F; p̈ = ∂ H

∂ X
− d

dt

(
∂ H

∂ Ẋ

)
; �1 = −1

δ
p (21)

where �1 is obtained by setting ∂ H/∂�1 = 0 and the optimal
generalized torque control � is obtained from (17) as

� = −1

δ
Gp. (22)

Remark VII: In our data collection experiments, the eye and
the head trajectories are observed, but the torque inputs are not
observed. Via this simulation, we synthesize the control input
using our dynamic model, that closely tracks the observed
trajectories. Using the eye and the head movement trajectories,
obtained in Simulation I, we presented in Fig. 3(a) the eye
tracking error and in Fig. 3(d) the error between current and
final position of the head, from observed data.15 �.

B. Simulation II: Head and Eye are Optimally Controlled,
Eye Reverse Tracking the Head Movement

As in Simulation I, we continue to assume that the dynamics
of the head and the eye are given by (16). The cost function
for the head is given by

JH =
∫ 1

0

δ

2
�T

1 �1 + pT (
F − Ẍ

) + λT D + 1

2
λ̇T ε λ̇ dt (23)

and for the eye is given by

JE =
∫ 1

0

δ

2
�T

1 �1 + β

2
CT C + pT (

F − Ẍ
)

dt . (24)

The cost function JH is chosen so that the head is optimally
controlled between two boundary points. It has four parts. The
first part is a quadratic cost function on the control. The second
part contains Ẍ = F from the equations of motion (16), where
p(t) is the Lagrange multiplier. The third part constrains the
state X onto the Donders’ surface D(X) = 0 with a Lagrange
multiplier λ. Finally, the fourth term is to be viewed as a
penalty term, where the parameter ε decides on the level of
smoothness of the Lagrange multiplier. The cost function JE

is chosen so that the eye optimally tracks a signal A(t). The
function has three parts, the first and the third are identical
to JH . The second part, where C = (A(t) − X), constrains
the state X to track the signal A(t).16 The parameters for the
cost functions (23) and (24) are chosen as follows: δ = 2,
ε = 2 × 10−8 (for the head dynamics); δ = 2, β = 20 000
(for the eye dynamics). Note that for the eye dynamics, the
ratio of δ and β emphasizes the relative importance between
the tracking error in comparison with the magnitude of the
generalized torque. The chosen values force low-tracking error
at a possibly higher magnitude of the generalized torque.

15The errors cannot be plotted directly from the data. This is because the
observed data needs to be interpolated by a smoothing function. Simulation I
has also been used for this purpose.

16The tracking function A(t) is ρ−1ξ(t), where ξ(t) is the tracking function
(7) and ρ is the map defined in (1). A(t) is thus the tracking function described
in the angle coordinates θ, φ, α.

Fig. 3. (a) Eye tracking error when the head and eye are following observed
trajectories from a human subject (Simulation I). (b) Eye tracking error
when the head is following optimal trajectory on the Donders’ surface with
constrained initial and final points (Simulation II). (c) Eye tracking error when
the head is potentially controlled toward a final point and is constrained by the
Donders’ surface (Simulation III). (d) Head is following observed trajectory
from a human subject (Simulation I). (e) Head is following optimal trajectory
constrained by the Donders’ surface with fixed initial and final conditions
(Simulation II). (f) Head follows a path of decreasing potential function toward
a final point and is constrained by the Donders’ surface (Simulation III).
Top: eye tracking error, in torso coordinates, has been expressed as angles.
Blue: angle between the eye quaternion and the target represented as a
quaternion. Red: angle between the eye direction and the target direction.
Bottom: error between current and final position of the head, in torso
coordinates, has been expressed as angles. Blue: angle between the current
head quaternion and the final head quaternion. Red: angle between the current
head direction and the final head direction.

The initial and final orientations of the head and the eye are
chosen as follows. For the head, the observed orientations at
the end points are projected onto the Donders’ surface. The
projected end points are chosen as the boundary conditions for
our simulation. For the eye, the initial orientation coincides
with the straight gaze direction, i.e., the eye looking straight
with respect to the head coordinates. The final orientation of
the eye satisfies Listing’s constraint with respect to the final
orientation of the head, while gazing directly at the target.
Boundary conditions are prescribed by choosing the vector
(X (0), Ẋ(0), X (1), Ẋ(1)).

The Hamiltonian [14] for the head is defined as

HH = δ

2
�T

1 �1 + pT F + λT D (25)

and we write

JH =
∫ 1

0

[
HH − pT Ẍ + 1

2
λ̇T ε λ̇

]
dt . (26)

Applying the principle of variation, we obtain the following
set of Hamilton’s equations:

Ẍ = ∂ HH

∂p
= F; p̈ = ∂ HH

∂ X
− d

dt

(
∂ HH

∂ Ẋ

)

λ̈ = ε−1 ∂ HH

∂λ
; �1 = −1

δ
p (27)

where the optimal control �1 is obtained by setting
∂ HH/∂�1 = 0. As before, the control � is given by (22).
The Hamiltonian [14] for the eye is same as (19) and the
corresponding Hamilton’s equations are given by (21). Finally,
the optimal control � is given by (22).
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Remark VIII: To solve the two point boundary value
problems of the kind introduced in (21) and (27), we dis-
cretize the equations using Comsol-Multiphysics finite element
software [20], widely used in the computational commu-
nity to solve both initial and boundary value problems.
The software automatically generates Galerkin finite element
approximation [21] for a specific PDE equation, once the
problem is entered in its weak or strong formulation.
The Comsol software facilitates the solution of multiphysics
nonlinear coupled problem, where the Jacobian in the Newton
iteration scheme is evaluated through automatic differentiation
[22]. The corresponding linearized system is then solved using
a direct or iterative solver. �

V. TRACKING WITH POTENTIAL CONTROL IN

HUMAN HEAD AND EYE

Instead of minimizing a cost function (18), (23), and (24),
we show in this section that the head and the eye rotations can
be controlled using a potential function and an added damping
term. The potential function is described [10] as follows:

V (θ, φ, α) = A (1 − |ρ(θ, φ, α).ρ0|) (28)

where A is a constant parameter, ρ0 is a fixed unit quaternion,
and ρ(θ, φ, α). The ρ0 represent the dot product of two vectors
in IR4. It can be observed that the minima occurs at ρ = ρ0 or
ρ = −ρ0. Both of these minima correspond to a unique point
on SO(3) via the map rot introduced in (3). The parameter ρ0
can be constant or can vary in time.

A damping term is added externally using the generalized
torque input �, the goal of which is to dampen the movement
so that it comes to a rest at the desired pointing direction
and orientation, described by ρ0. We consider a damping term
described by

�1 = −c Ẋ (29)

where c is an arbitrary constant. The motion equation (13) is
written as

Ẍ + (G−1Ġ + c) Ẋ − 1

2
G−1 Ẋ T ∇X G Ẋ

+G−1∇X V = 0. (30)

If we now define

�2 = −cẊ − G−1∇X V (31)

we have an equation similar in form to (16), given by

Ẍ + G−1Ġ Ẋ − 1

2
G−1 Ẋ T ∇X G Ẋ = �2. (32)

The generalized torque vector � = G�2 = −cG Ẋ − ∇X V is
called the potential control [10]. Note that the potential control
is a combination of the damping term and the gradient of the
potential function.

Remark IX: Similar to observation made in Remark V, we
note that the motion equation (30) remains unchanged when
G and V are both scaled by a fixed scale factor. Thus, the
motion equation (30) can be used for both, the eye and the
head, which only differ from each other by a scale factor in G.

Fig. 4. (a) Eye movement trajectories with respect to the torso. (b) Eye
movement trajectories with respect to the head. (c) Head movement trajecto-
ries with respect to the torso. Actual and simulated head and eye trajectories
using scaled coordinates q̄i = qi /q0 for i = 1, 2, 3, where [q0, q1, q2, q3]T
is the unit quaternion. These are coordinates of the rotational vector (4).
Blue lines: actual trajectories. Red and green lines: trajectories from the
Simulation II (optimal) and Simulation III (potential), respectively. Note that
the head movement trajectories under the influence of optimal and potential
control are surprisingly close, but differs from the actual trajectory. In addition,
observe the backward movement of the eye in (b).

The two systems can, therefore be identically controlled by
scaling V by the same scale factor. �

We now describe Simulation III in some details. As in
Simulation II, the goal of the head control system is to drive
the head from an initial orientation to a final orientation.
However, as opposed to minimizing a cost function, the control
drives the state toward smaller values of the potential function
(28). We choose ρ0 to coincide with the final orientation of
the head. The goal of the eye controller is to track signal A(t),
which was introduced in Simulation II. To track a signal A(t)
using a potential function, we choose ρ0(t) = A(t) and the
potential function is given by

V (θ, φ, α, t) = A (1 − |ρ(θ, φ, α) · ρ0(t)|). (33)

It is easy to see that with the choice of the potential
function (33), the orientation of the eye tracks the given target
signal A(t), provided that the constant A is chosen sufficiently
large. In our simulation the parameters for the head system
are chosen as A = 40, c = 12, and the parameters for the eye
system are chosen as A = 500 and c = 26.

VI. RESULTS

Recorded data from six subjects have been used to plot the
head and the eye movement trajectories, when the head/eye
complex has the task of acquiring a point target fixed in
space with the eye starting from an initial primary position.
The trajectories of the head and the eye are projected on the
heading/gaze space and shown in the top three plots of Fig. 5.
The trajectories are also shown in Fig. 4 on the coordinates of
the rotational vector. In general, the eye trajectories are plotted
with respect to, both, the fixed torso coordinates and the mov-
ing head coordinates. From the eye trajectories in Fig. 5, we
infer that the effect of head movement is compensated by the
back tracking movement of the eye. Fig. 4 is less informative
but shows that the effect of optimal and potential control on the
head trajectories, and to some extent on the eye trajectories,
are surprisingly close. The simulated trajectories are somewhat
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different from the actual trajectories observed and there are
possibly two reasons for this. The first is that the Donders’
and Listing’s constraints are not tightly satisfied by the actual
trajectory. This is evident from Table I (right), where we
observe that the eye can deviate from the Listing’s constraint
by 2.77° on an average. Likewise, the head can deviate from
the Donders’ constraint by 1.082° on an average. The second
is that the cost functions of the optimal controller and the
potential functions considered in the potential controller need
fine tuning. Such an inverse optimal/potential control problem
has not been looked at, in this brief.

One of the key findings of this brief is evident in
Fig. 5(a) and (d), where the eye trajectory using experimentally
measured data is shown to track a computed trajectory (shown
in black). This black trajectory is the tracking signal ξ(t) in
(7). In addition, we illustrate the point that the eye tracking
is achieved in an optimal control setting by minimizing a
cost function (24) and the optimal eye trajectory is shown
in Fig. 5(b) with a closeup view in Fig. 5(e). The eye tracking
is also achieved in a potential control setting by choosing a
potential function (33) and the potential eye trajectory is shown
in Fig. 5(c) with a closeup view in Fig. 5(f).

For each of the three simulations, the eye tracking error
is shown in Fig. 3 (top). Error is displayed in blue by
computing the angle between corresponding unit quaternion
vectors and in red by computing the angle between unit gaze
vectors. While looking at Fig. 3 (top), one would ask how
quickly does the tracking errors go to zero and how stable
is the error plot in the neighborhood of zero? From Fig. 3(c),
it is evident that the potential eye trajectory goes to zero
rapidly, but it overshoots immediately. On the other hand, we
observe from Fig. 3(b) that the optimal eye trajectory goes
to zero relatively slow. The tracking error for the observed
eye trajectory, shown in Fig. 3(a), show that the error goes
to zero rapidly as well, and is quite stable. Although, Fig. 3
(top) displays the error plot for one subject performing one
manoeuvre, this picture has been averaged over multiples
manoeuvres and six subjects. It has been observed that on
an average, the potential eye trajectory goes to zero most
rapidly, the optimal eye trajectory is most stable. The actual
eye trajectories lie in between the optimal and the potential.

Head trajectories are simulated and studied in [10] and
Fig. 3 (bottom) describes how rapidly does the head reaches
its final end point. The figure displays similarity between
the actual and the optimal trajectories in comparison with
the actual and potential trajectories. Finally, in Figs. 6 and 7,
the actual generalized torque input to the head/eye com-
plex is compared with the simulated generalized torque
inputs required for the optimal and the potential controller.
In Figs. 6(a) and 7(a), the three components of the generalized
torque inputs are plotted assuming that the head and the eye
track an experimentally observed trajectory. Since the torque
inputs are not measured, we use optimal tracking methods
described in Simulation I to reconstruct the torques.

VII. DISCUSSION

Recorded data shows that during the process of acquiring
a point target, fixed in space, human head/eye synchronizes

Fig. 5. (a) Actual trajectories of the head and eye using observed data from
one human subject, performing one specific manoeuvre. (b) Head moves
optimally satisfying boundary constraints, while the eye is backtracking
the head movement (Simulation II). (c) Head moves potentially satisfying
boundary constraints, while the eye is backtracking the head movement
(Simulation III). (d) Closeup view of the bottom curve in (a). (e) Closeup
view of the bottom curve in (b). (f) Closeup view of the bottom curve
in (c). In (a)–(c), trajectories of the head and the eye are projected on the
gaze (heading) space. All trajectories start near the center of the circle.
Short (blue) trajectory on top is the head movement. Green trajectory in
the middle is the eye movement with respect to a fixed global coordinate.
Bottom (black) trajectory corresponds to the eye movement with respect to
the moving head coordinates. All three black trajectories clearly show the
backward movement of the eye corresponding to the forward movement of
the head (see footnote 2). In (d)–(f), black curves are closeup views of the
eye trajectories projected on the gaze space. Trajectories start at the top right
corner of the figures. They move downward and reverses to follow a tracking
signal. Dashed line is the tracking signal ξ(t) (7) that the eye tracks.

their movements. To stabilize the image on the retina, the
eye has to backtrack the forward movement of the head
(see footnote 2). This keeps the eye fixed with respect to a
global coordinate system. By constructing a dynamic model,
we show in this brief that the backtracking movement of
the eye can be reconstructed using two alternate forms of
control strategy (optimal and potential), introduced earlier in
[10], [13], and [14], for eye and head movement problems
separately (see [9] for a survey). Eye and head movement data
from six subjects have been analyzed in detail and the results
are cumulated to derive conclusions reported in this brief.
In addition, for the purpose of illustration, simulation results
from one subject has been displayed in various figures
presented.

In Fig. 5, the head and the eye trajectories have been dis-
played on the heading/gaze space. The actual and the simulated
head/eye movements clearly show that the eye backtracks the
forward movement of the head. In Fig. 4, the head and the
eye trajectories are displayed on the rotational vector space.
This figure illustrates the point that, as a trajectory there is a
surprising closeness between the simulated trajectories under
the two different control strategies. However, the simulated
trajectories are far from the actual trajectory, indicating the
fact that the control strategies require fine tuning.

One of the main result of this brief is shown in Fig. 5.
In the beginning of this brief, we had conjectured that the
eye has to track a computed tracking signal (in the head
coordinate), based on the head movement and the 3-D location
of the point target. This is required, in order for the head
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Fig. 6. Figures display three components of the generalized torques
applied to the eye dynamics. (a) Head and eye are following an observed
trajectory. (b) Head is following an optimal trajectory where the end points
are constrained and the eye is backtracking the head. (c) Head is potentially
controlled and the eye is backtracking the head. In (a), torque vector displayed
is our estimate of the torque required for the eye dynamics to follow
the observed trajectory. In (b) and (c), optimal and the potential torques
are, respectively, displayed. All displayed torque vectors have been scaled,
as defined by �1 in (17).

and the eye to satisfy, respectively, the Donders’ and Listing’s
constraints and for the image to be stabilized on the retina once
the eye fixates on the target. The display on Fig. 5(d) shows
the validity of this conjecture, by displaying the computed
signal to be tracked (in dashed line). The actual eye movement
trajectory (in black) shows the tracking movement of the eye.
In Fig. 5(e) and (f), the tracking movements of the eye are
displayed under optimal and potential controls, respectively.
The tracking errors are displayed in Fig. 3 (top) and illustrate
the point that the actual tracking errors drop to zero faster than
the error under optimal control, and about the same time as
the potential control. Unfortunately, the error under potential
control, overshoots and settles down rather slowly. The error
plots, between the current and the final head orientation, in
Fig. 3 (bottom) show similarity between actual and the optimal
head movements. Under potential control, the head moves
rapidly in the beginning and slows down later, toward the end.

In Figs. 6 and 7, the generalized torque vectors are plotted
for the head and the eye movements, respectively. We com-
pute the generalized torques required for the actual head/eye
movements to follow the observed trajectories. We compute
the generalized torques required when the head/eye has to
follow the optimal control strategy and the potential control
strategy. As expected, the potential control takes higher values
compared with the optimal control. For head movement con-
trol, closer to the end point, the potential control tapers off to
zero, whereas the optimal control continues to maintain high
values. The actual generalized torque, reconstructed from the
data, does not taper off to zero for the head movement control,
either. In this sense, the head movements are qualitatively
similar to the optimal control strategy. All torques taper off
to zero for the eye movement, but the torque profile for the
optimal torque goes to zero slower in comparison with the
actual torque and torque computed under potential control.
Potential control and the actual control, both taper off to zero
around the same time for eye movements, even though the
potential control start from a higher magnitude. In this sense,
the actual controls in eye movements are qualitatively similar
to the controls obtained under the potential control strategy.

By and large, the potential controller is quick to fixate on
the target. It is however, unable to retain the target stably.
The optimal controller, on the other hand, is relatively slow in
fixating on the target, but the target once acquired is retained

Fig. 7. Figures display three components of the generalized torques
applied to the head dynamics. (a) Head and eye are following an observed
trajectory. (b) Head is following an optimal trajectory where the end points
are constrained and the eye is backtracking the head. (c) Head is potentially
controlled and the eye is backtracking the head. In (a), torque vector displayed
is our estimate of the torque required for the head dynamics to follow
the observed trajectory. In (b) and (c), optimal and the potential torques
are, respectively, displayed. All displayed torque vectors have been scaled,
as defined by �1 in (17).

well. The actual eye movements fall somewhere in between.
For the parameters chosen in this brief, their ability to fixate
on the target is never faster than the potential controller,
and their ability to retain the target is always better than the
optimal controller.

VIII. ADDITIONAL REMARKS AND NOTES ON

CONTROLLING THE HEAD/EYE COMPLEX

It is well known [23] that eye movements are either reflex-
ive or voluntary. The reflexive eye movements fall into the
category of vestibulo-ocular reflex (VOR) and the optokinetic
response. Voluntary eye movements, on the other hand could
be saccadic or smooth-pursuit movements. This brief focuses
on the VOR, to build a control strategy for eye movement to
compensate for the moving head. Although the eye control
signals are typically generated by the vestibular circuit [24],
this circuit has not been modeled.

It has been recently observed [25], that the optimal eye
control is generated not entirely at the vestibular level. It is
proposed that an efference copy of the head movement is used
to stabilize gaze and that cerebellum [26] plays a role in the
process of generating the required motor commands.17

As pointed out in [25], there are many ways of com-
bining eye and head movements to perform large gaze
shifts. The very fact that an unique selection of move-
ments are chosen [27] suggests some level of optimality
(see [13], [14] for a discussion of optimal control for eye
and head movements separately). For the combined head/eye
complex, [12] has recently shown (in the context of horizontal
eye and head movements), that movements are optimally
selected to minimize gaze variability. This fact was also
proposed earlier [28], [29] for head fixed saccades. This brief
extends this line of research to 3-D, using geometric mechanics
[30].18 Optimal tracking control is introduced as one way to
implement gaze stabilization. Implementation of this control
at a vestibular and cerebellar level, with vestibular induced
motor learning, has not been looked into.

17The vestibular circuit shapes the motor command, optimize gaze shifts and
calibrate the head-movement efference copy, in the cerebellum, to stabilize
gaze.

183-D head and eye movements with signal dependent noise is a subject of
future research.
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Remark X: Although targets are assumed to be stationary in
this brief, our model head/eye complex can be controlled to
follow a moving target as well. It is unclear, however, what
would be the appropriate form of Listing’s constraint, the eye
would satisfy in this case.

IX. CONCLUSION

This brief extends our earlier study on head movement con-
trol problem [10] where, either the head movements are actu-
ated by a controller, which minimizes a suitably chosen cost
function (optimal control) or the control signals drive the head
toward a path that reduces a suitably chosen potential function
(potential control). We apply the optimal and potential control
strategies to both the head and the eye movement problems.
An important distinction between potential and optimal control
strategies is that, potential controller drives the system-states
rapidly in the beginning followed by small changes toward
the end. On the other hand, an optimal controller drives the
system-states somewhat evenly throughout the entire time of
actuation. A consequence of this qualitative difference between
a potential and an optimal controller is that, the applied torques
during potential control are large initially and taper off to small
values subsequently during actuation. On the other hand, the
control torques during optimal control maintain large values,
most of the time, during entire period of actuation. On the basis
of the this criterion, we find that the actual head movement has
the qualitative features of an optimal head movement. From the
point of view of how rapidly the tracking error goes to zero
and how stable the target is, once it is acquired, the actual
eye movement falls somewhere in between optimal and the
potential control schemes discussed in this brief.
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