
ESSAY. Write your answer in the space provided or on a separate sheet of paper.

- 1) A researcher claims that the proportion of smoking adults in a town is less than 34%. A random sample of 233 adults in this town yeilds 96 smokers. Can you conclude at 5% significance level, the proprtion of smoking
 - (i) State the null and alternative hypothesis.

(ii) FInd the sample proportion of smoking adults.

(iii) Calculate the test statistics.

$$Z = \frac{\hat{\rho} - \rho_0}{\sqrt{\frac{\rho_0 (1 - \rho_0)}{n}}} = \frac{0.412 - 0.34}{\sqrt{\frac{(0.34)(1 - 0.34)}{2333}}} = \frac{0.072}{0.031}$$
(iv) Find the p- value.

(v) What is your conclusion?

at sy sig level We can conclude it that the proportion of smoking adults in this town is greater than 34 %.

2) A reporter claims that percentage of voters who prefer health care reform bill is greater than 50%. A poll of 1000 registered voters reveals that 48% of the voters prefer the bill. Can you conlcude at 0.05 significance level, that the percentage of voters who prefer the bill is less than 50%.

Ho:
$$P = 0.5$$
 Vs Ha: $P < 0.5$ $\hat{P} = 48\% = 0.48$

Test statistic = left tail

$$Z = \frac{\hat{P} - Po}{\int \frac{Po(1 - Po)}{n}} = \frac{0.48 - 0.5}{\int \frac{(0.5)(1 - 0.5)}{1000}} = \frac{-0.02}{0.0158} = -1.27$$

0-1020 P-value.

P value sig value fail to 0.1020 > 0.05 Reject Ho

We can't conclude at 5% sig level that percentage of voters who prefer the bill is less than 50%.

3) A manager claims that the proportion of male wokers in his company is 0.65. There were 336 male workers among 490 sample of workers. At 1% significance level, can you conclude that the proportion of male workers differes from 0.65?

H_o:
$$p = 0.65$$
 Vs Ha: $p \neq 0.65$ Two tailed test.
Test statistic: $\hat{p} = \frac{336}{490} = 0.686$
 $Z = \frac{\hat{p} - p_o}{\sqrt{\frac{p_o(1 - p_o)}{n}}} = \frac{0.686 - 0.65}{\sqrt{\frac{(0.65)(1 - 0.65)}{490}}} = \frac{0.036}{0.0215} = 1.67$

$$0.0475$$
 0.0475
 0.0475
 0.0475
 0.0475
 0.0475
 0.0475
 0.0950

Check using confidence intervals.

$$\beta \pm \text{ margin of error}$$
.

0.686 $\pm 2.575 \sqrt{(0.686)(1-0.686)}$

0.686 ± 0.054