Partial Fractions (§12.7 \& §12.8)

The following table tells you the form of partial fractions to pick. Here $p(x)$ is any polynomial with degree less than the degree of the denominator. (For example, if the denominator is degree 2, then $p(x)$ has to be linear polynomial or a constant term. If the degree of the denominator is 3 then, $p(x)$ has to be a quadratic polynomial, linear polynomial or a constant term.) YOU HAVE TO KNOW THE FOLLOWING TABLE !

Name	Rational Function Form	Partial Fraction form
Two Linear Factors	$\frac{p(x)}{(x+a)(x+b)}$	$\frac{A}{(x+a)}+\frac{B}{(x+b)}$
Three Linear Factors	$\frac{p(x)}{(x+a)(x+b)(x+c)}$	$\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)}$
Irreducible Quadratic	$\frac{p(x)}{\left(a x^{2}+b x+c\right)(x+d)} ; b^{2}-4 a c<0$	$\frac{A x+B}{\left(a x^{2}+b x+c\right)}+\frac{C}{(x+d)}$
Linear Factors with Multiplicity	$\frac{p(x)}{(x+a)^{2}(x+b)}$	$\frac{A}{(x+a)}+\frac{B}{(x+a)^{2}}+\frac{C}{(x+b)}$

If the denominator is not factored, you WILL HAVE TO factor it first, unless it is irreducible.
Then the problem is to find the constants A, B, C, \ldots

Worked Examples

- $\frac{5 x+4}{(x+2)(x-3)}$

We have to use the form $\frac{5 x+4}{(x+2)(x-3)}=\frac{A}{(x+2)}+\frac{B}{(x-3)}$.
Take the right hand side to a common denominator, while leaving the left side as it is.

$$
\frac{5 x+4}{(x+2)(x-3)}=\frac{A(x-3)+B(x+2)}{(x+2)(x-3)}
$$

Expand the parenthesis of the right hand side expression. $\frac{5 x+4}{(x+2)(x-3)}=\frac{A x-3 A+B x+2 B}{(x+2)(x-3)}$
Group the terms. $\frac{5 x+4}{(x+2)(x-3)}=\frac{(A+B) x-3 A+2 B}{(x+2)(x-3)}$
Compare the coefficients of the numerator (WE WANT THEM TO BE THE SAME)

$$
\left\{\begin{array}{lr}
\text { Coefficient of } x: & A+B=5 \\
\text { Constant term : } & -3 A+2 B=4
\end{array}\right.
$$

So, we have to solve this system of equations to find A and B. If we do it properly, we will get, $A=\frac{6}{5}$ and $B=\frac{19}{5}$. Hence the partial fraction expansion is:

$$
\frac{5 x+4}{(x+2)(x-3)}=\frac{(6 / 5)}{(x+2)}+\frac{(19 / 5)}{(x-3)}
$$

- $\frac{2 x+1}{\left(x^{2}+4\right)(x+5)}$

We have to use the form $\frac{2 x+1}{\left(x^{2}+4\right)(x+5)}=\frac{A x+B}{\left(x^{2}+4\right)}+\frac{C}{(x+5)}$, since $b^{2}-4 a c=0^{2}-(4)(1)(4)=-16<0$.
Take the right hand side to a common denominator, while leaving the left side as it is.

$$
\frac{2 x+1}{\left(x^{2}+4\right)(x+5)}=\frac{(A x+B)(x+5)+C\left(x^{2}+4\right)}{\left(x^{2}+4\right)(x+5)}
$$

Expand the parenthesis of the right hand side expression. $\frac{2 x+1}{\left(x^{2}+4\right)(x+5)}=\frac{A x^{2}+5 A x+B x+5 B+C x^{2}+4 C}{\left(x^{2}+4\right)(x+5)}$
Group the terms. $\frac{2 x+1}{\left(x^{2}+4\right)(x+5)}=\frac{(A+C) x^{2}+(5 A+B) x+(5 B+4 C)}{\left(x^{2}+4\right)(x+5)}$
Compare the coefficients of the numerator (WE WANT THEM TO BE THE SAME)

$$
\left\{\begin{array}{lr}
\text { Coefficient of } x^{2}: & A+C=0 \\
\text { Coefficient of } x: & 5 A+B=2 \\
\text { Constant term : } & 5 B+4 C=1
\end{array}\right.
$$

So, we have to solve this system of equations to find A and B and C. If we do it properly, we will get, $A=\frac{9}{29}$, $B=\frac{13}{29}$ and $C=\frac{-9}{29}$.
Hence the partial fraction expansion is:

$$
\frac{2 x+1}{\left(x^{2}+4\right)(x+5)}=\frac{\left(\left(\frac{9}{29}\right) x+\left(\frac{13}{29}\right)\right)}{\left(x^{2}+4\right)}+\frac{\left(\frac{-9}{29}\right)}{(x+5)}
$$

- $\frac{4 x+3}{(x+2)^{2}(x+1)}$

We have to use the form $\frac{4 x+3}{(x+2)^{2}(x+1)}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}}+\frac{C}{(x+1)}$, since factor $(x+2)$ has multiplicity 2.
Take the right hand side to a common denominator, while leaving the left side as it is.

$$
\frac{4 x+3}{(x+2)^{2}(x+1)}=\frac{A(x+2)(x+1)+B(x+1)+C(x+2)^{2}}{(x+2)^{2}(x+1)}
$$

Expand the parenthesis of the right hand side expression.

$$
\begin{aligned}
\frac{4 x+3}{(x+2)^{2}(x+1)} & =\frac{A\left(x^{2}+3 x+2\right)+B(x+1)+C\left(x^{2}+4 x+4\right)}{(x+2)^{2}(x+1)} \\
& =\frac{A x^{2}+3 A x+2 A+B x+B+C x^{2}+4 C x+4 C}{(x+2)^{2}(x+1)}
\end{aligned}
$$

Group the terms. $\frac{4 x+3}{(x+2)^{2}(x+1)}=\frac{(A+C) x^{2}+(3 A+B+4 C) x+(2 A+B+4 C)}{(x+2)^{2}(x+1)}$

Compare the coefficients of the numerator (WE WANT THEM TO BE THE SAME)

$$
\left\{\begin{array}{lr}
\text { Coefficient of } x^{2}: & A+C=0 \\
\text { Coefficient of } x: & 3 A+B+4 C=4 \\
\text { Constant term : } & 2 A+B+4 C=3
\end{array}\right.
$$

So, we have to solve this system of equations to find A and B and C. If we do it properly, we will get, $A=1$, $B=5$ and $C=-1$.

Hence the partial fraction expansion is:

$$
\frac{4 x+3}{(x+2)^{2}(x+1)}=\frac{1}{(x+2)}+\frac{5}{(x+2)^{2}}+\frac{-1}{(x+1)}
$$

NOTE: If the degree of the numerator is greater than the degree of the denominator, use polynomial (long or synthetic) division to find the quotient and residue.

- $\frac{x^{3}+6 x^{2}+11 x+7}{\left(x^{2}+3 x+2\right)}$

Since the numerator is degree 3 and the denominator is degree 2, we use polynomial division to obtain the quotient and residue.

$$
\frac{x^{3}+6 x^{2}+11 x+7}{\left(x^{2}+3 x+2\right)}=(x+3)+\frac{1}{\left(x^{2}+3 x+2\right)}
$$

Note that the denominator can be factored $x^{2}+3 x+2=(x+2)(x+3)$. So we may write,

$$
\frac{x^{3}+6 x^{2}+11 x+7}{\left(x^{2}+3 x+2\right)}=(x+3)+\frac{1}{(x+1)(x+2)}
$$

We can find the partial fraction expansion only for $\frac{1}{(x+1)(x+2)}$ term:

$$
\frac{1}{(x+1)(x+2)}=\frac{1}{(x+1)}-\frac{1}{(x+2)} .(\text { fill in the details } \ldots)
$$

So, we write:

$$
\frac{x^{3}+6 x^{2}+11 x+7}{\left(x^{2}+3 x+2\right)}=(x+3)+\frac{1}{(x+1)}-\frac{1}{(x+2)}
$$

Exercises

Find the partial fraction expansions of the following rational functions

1. $\frac{2 x+5}{(x+2)(x+3)}$
2. $\frac{x^{2}+5 x+5}{(x+2)^{2}(x+1)}$
3. $\frac{x^{2}+4 x+4}{(x+2)^{2}(x+1)}$
4. $\frac{x^{2}+x+1}{\left(x^{2}+1\right)(x+1)}$
5. $\frac{x+1}{\left(x^{2}+1\right)\left(x^{2}+2\right)}$
6. Exercise 12.7 (page 954) Problems 17, 18, 19, 20, 21, 22)
