1. Laws of real numbers

Let a and b be two real numbers then,
(a) $0 \cdot a=0$
(b) $-a=(-1) \cdot a$
(c) $-(-a)=a$
(d) $a \cdot(-b)=-(a b)$
(e) $(-a) \cdot(-b)=a b$
2. Laws of exponents

Let a and b be two real numbers, and n and m be two integers or rational numbers
(a) $a^{m} a^{n}=a^{m+n}$
(b) $\left(a^{m}\right)^{n}=a^{m n}$
(c) $(a b)^{m}=a^{m} b^{m}$
(d) if $a \neq 0$, then $\frac{a^{m}}{a^{n}}=a^{m-n}$
(e) if $b \neq 0$, then $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
(f) if $a \neq 0$, then $a^{0}=1$

3. Laws of principal roots

Let a and b be two real numbers, and n and m be two integers,
(a) $\sqrt[m]{a b}=\sqrt[m]{a} \sqrt[m]{b}$
(b) $\sqrt[m]{\frac{a}{b}}=\frac{\sqrt[m]{a}}{\sqrt[m]{b}}$
(c) $\sqrt[m]{\sqrt[n]{a}}=\sqrt[m n]{a}$
(d) i. If n is even $\sqrt[n]{x^{n}}=|x|$ ii. If n is odd $\sqrt[n]{x^{n}}=x$

4. Absolute value

(a) Geometric interpretation: The absolute value of a real number x, denoted by $|x|$, is the distance from the origin to x (or x to the origin), regardless of the direction.
(b) Algebraic interpretation:

$$
|x|= \begin{cases}x & \text { when } x \geq 0 \\ -x & \text { when } x<0\end{cases}
$$

5. Properties of absolute value
(a) For any real number x, we have
i. $|x| \geq 0$
ii. $x \leq|x|$ and $-x \leq|x|$
iii. $\left|x^{2}\right|=x^{2}$
(b) For two real numbers a and b,
i. $|a b|=|a||b|$ and if $b \neq 0$, $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
ii. $|a+b| \leq|a|+|b|$ gle inequality)
6. The distance between two numbers a and b on the real line is given by $|a-b|$ and this is equal to $|b-a|$.
7. Distance between two points in rectangular coordinates Given two points $P\left(x_{P}, y_{P}\right)$ and $Q\left(x_{Q}, y_{Q}\right)$, distance d is:

$$
d=\sqrt{\left(x_{Q}-x_{P}\right)^{2}+\left(y_{Q}-y_{P}\right)^{2}}
$$

8. The mid point rule The mid point M of the line segment $P Q$

$$
M=\left(\frac{x_{P}+x_{Q}}{2}, \frac{y_{P}+y_{Q}}{2}\right)
$$

9. Point dividing a line to a given ratio The point R on the line segment $P Q$ such that $P R / Q R=p / q$...

10. Slope of a line

Given two points P and Q, slope m of line through P and Q :

$$
m=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}
$$

11. x - and y - intercepts ...
12. Equation of lines
(a) Slope - y- intercept formula: Given slope m and y-intercept $c: y=m x+c$
(b) Slope - point formula: Given slope m and point $P\left(x_{P}, y_{P}\right)$: $y=m\left(x-x_{P}\right)+y_{P}$
(c) Two point formula: Given two points $P\left(x_{P}, y_{P}\right)$ and $Q\left(x_{Q}, y_{Q}\right): \ldots$
(d) Vertical and horizontal lines:
(e) Standard Equation $A x+B y+$ $C=0$
13. Parallel and perpendicular lines Given two lines with slopes m_{1} and m_{2},
(a) They are parallel if $m_{1}=m_{2}$
(b) They are perpendicular if $m_{1}=-1 / m_{2}$
14. Symmetry Given the equation of a graph:
(a) Symmetric about x-axis if replacing y with $-y$ yields an equivalent equation.
(b) Symmetric about y-axis if replacing x with $-x$ yields an equivalent equation.
(c) Symmetric about the origin if replacing x with $-x$ and y with $-y$ yields an equivalent equation.
15. Standard formula of a circle Given center (h, k) and radius r,

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

16. Zero-product property of real numbers: For two real numbers p and q, we get $p q=0$ if and only if $p=0$ or $q=0$ or both

17. Quadratic Formula

The solution to a quadratic equation $a x^{2}+b x+c=0$, when $a \neq 0$ is given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

18. Scientific notation ...
19. Significant digits, decimal places and rounding ... ($A-1$)
20. Factoring ...
21. Open and closed intervals, mixed (half open/closed) intervals, unbounded intervals
22. Completing the square ... "adding $(B / 2)^{2} \ldots$ "
23. Using the discriminant ...
24. Solving different types of equations and inequalities... (chapter 2)
25. Rewriting expressions removing the absolute value sign ...
