MATH1550: Precalculus

Lecture 01

August 26, 2010

Lecture 01 MATH1550: Precalculus

Best wishes for a great semester ahead!

Numbers in day to day life

- Counting Numbers (a.k.a. Natural Numbers)
 - Numbers that use to count things
 e.g. counting people, votes, horses, stars etc.
 1, 2, 50, 102356486, etc.
 0 is a tricky customer some use it and some don't, the book does NOT
- Integers
 - Signed natural numbers along with 0
 - e.g. monetary transactions, like using gold coins
 - (+) for assets; (-) for liabilities or debt
 - 0, 1, -22, -150, 78545234130, -698524 etc.
- Rational Numbers
 - Numbers that can be expresses as a fraction "ratio" of two integers (hence the name), with non zero denominator.
 e.g. dividing 3 similar cakes equally among 15 people, ¹/₂, 0.75(= ³/₄), 4.162, 15(= ¹⁵/₁), etc. Integers are rational numbers themselves Decimal expansion will either terminate or repeats after a while

There are other types of numbers such as:

- Irrational numbers
 Numbers which CANNOT be expressed as a ratio of two integers (hence the name)
- Real numbers

Rational numbers and irrational numbers together

- Complex numbers
 - ... a little "complex" if you have not see them before... :)

"A **constant** is a value that we know for sure or does not change its value within our range of consideration"

"A **variable**, on the other hand is some thing we do not know the value for sure within our range of consideration"

"The legitimate range of values a variable can assume is known as the **domain** of the variable"

Examples for constants and variables

Since we do not know the exact value of a variable, we think of it as an "unknown" number, and usually give it a name or use some symbol to represent the variable.

For example, we call a variable "Sam", \Box , \circ , x, α , y_1 etc. But we usually prefer to use roman letters like x, y, z.

If we write a mathematical expression, for example

\Box + 5;

 \Box is the variable and 5 is the constant. If we put 7 in the place of the box we can evaluate the expression to be 7 + 5 = 12, if we plug in -1236548 to box we get -1236548 + 5 = -1236543.

We would often write this as x + 5.

Consider the mathematical expression ax + b. You are told that a and b are constant and x is variable. These types of expressions are called linear polynomials.

By fixing the values of a and b we get different linear polynomials.

For example, if we set a = 3 and b = 7, we get 3x + 7, which is one linear polynomial, If we set a = 1 and b = -2, we get 1x + (-2), which is one linear polynomial, this one we prefer to write simply as x - 2. The mathematical expression of the form $ax^2 + bx + c$ and again you are told that $a \ b$ and c are constant and x is variable; note that both the variable and its square are in the expression. These types of expressions are called **quadratic** polynomials.

By fixing the values of $a \ b$ and c we get different quadratic polynomials.

For example, by setting a = 5 b = -2 and c = 1 we get $5x^2 - 2x + 1$...

Identify the type, constants and variables in the following expressions

- **●** 5x + 2
- 2 $x^2 + 6x 5$
- 3 $2t^2 + 3t + 6$
- qu + pu² + r (you are told that u is the variable)
 y² + 6

Recall that ax + b is a Linear polynomial and $ax^2 + bx + c$ is a Quadratic polynomial

1 5x + 2Linear, variable x, constants a = 5, b = 2**2** $x^2 + 6x - 5$ Quadratic, variable x, constants a = 1, b = 6, c = -5**3** $2t^2 + 3t + 6$ Quadratic, variable t, constants a = 2, b = 3, c = 6 $au + pu^2 + r$ Quadratic, variable u, constants a = p, b = q, c = r**5** $v^2 + 6$ Quadratic, variable y, constants a = 1, b = 0, c = 6

We can consider expressions which contains higher powers of a given variable, say 'x' in the form $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where, $a_n, a_{n-1}, \ldots, a_1, a_0$ are all constants.

The highest power of the variable is called the **degree** of the polynomial.

For example:

A linear polynomial is a polynomial of degree 1 A quadratic polynomial is a polynomial of degree 2 $x^3 + 2x^2 + 3$ is a polynomial of degree 3 Identify the degree and constants of the following polynomials

 $5x^{4} + 6x^{3} + 3x^{2} + 2x + 2$ $-3x^{6} + 9x^{3} + 3x - 1$ $2t^{2} + 3t$ $3x + 4x^{3} + 2x^{2} + 5x^{4} + 1$ $3x^{2} + 4x + 2x + 5 + 2$

Answers

Compare with $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$

Just like in our " \Box " example earlier, given a polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, and the value of the variable x, you have to put the given value in every place x appears.

Evaluate the following polynomials at the given values

1
$$2x^2 + 3x + 1$$
 at 3, t, \diamondsuit
2 $2x^3 - 3x + 1$ at 1, \blacklozenge , -2
3 $4x - 3$ at $3/4$, $x + h$, 0
3 $x^2 + x - 4$ at 4, $x + h$, x^2

QUIZ

Instructions: Please DO NOT write your name on the answer paper.

This is just a survey.

- What is your current standing in the university? (Freshman, Sophomore, Junior or Senior)
- Why are you taking this class? (Required/Recommended/Good for the career/As a prerequisite for calculus/FOR FUN, etc)
- What are your comments about today's class?