MATH1550: Precalculus

Lecture 01

August 26, 2010

Best wishes for a great semester ahead!

Numbers in day to day life

- Counting Numbers (a.k.a. Natural Numbers)
- Numbers that use to count things
e.g. counting people, votes, horses, stars etc.

1, 2, 50, 102356486, etc.
0 is a tricky customer some use it and some don't, the book does NOT

- Integers
- Signed natural numbers along with 0
e.g. monetary transactions, like using gold coins
$(+)$ for assets; (-) for liabilities or debt
$0,1,-22,-150,78545234130,-698524$ etc.
- Rational Numbers
- Numbers that can be expresses as a fraction "ratio" of two integers (hence the name), with non zero denominator. e.g. dividing 3 similar cakes equally among 15 people, $\frac{1}{2}, 0.75\left(=\frac{3}{4}\right), 4.1 \overline{62}, 15\left(=\frac{15}{1}\right)$, etc.
Integers are rational numbers themselves
Decimal expansion will either terminate or repeats after a while

Other types of numbers

There are other types of numbers such as:

- Irrational numbers

Numbers which CANNOT be expressed as a ratio of two integers (hence the name)

- Real numbers

Rational numbers and irrational numbers together

- Complex numbers
... a little "complex" if you have not see them before... :)

Constants and Variables

"A constant is a value that we know for sure or does not change its value within our range of consideration"
"A variable, on the other hand is some thing we do not know the value for sure within our range of consideration"
"The legitimate range of values a variable can assume is known as the domain of the variable"

Examples for constants and variables

Since we do not know the exact value of a variable, we think of it as an "unknown" number, and usually give it a name or use some symbol to represent the variable.

For example, we call a variable "Sam", $\square, \circ, x, \alpha, y_{1}$ etc. But we usually prefer to use roman letters like x, y, z.

If we write a mathematical expression, for example

$$
\square+5 ;
$$

\square is the variable and 5 is the constant.
If we put 7 in the place of the box we can evaluate the expression to be $7+5=12$,
if we plug in -1236548 to box we get $-1236548+5=-1236543$.
We would often write this as $x+5$.

Linear Polynomials

Consider the mathematical expression $a x+b$. You are told that a and b are constant and x is variable. These types of expressions are called linear polynomials.

By fixing the values of a and b we get different linear polynomials.
For example, if we set $a=3$ and $b=7$, we get $3 x+7$, which is one linear polynomial, If we set $a=1$ and $b=-2$, we get $1 x+(-2)$, which is one linear polynomial, this one we prefer to write simply as $x-2$.

Quadratic Polynomials

The mathematical expression of the form $a x^{2}+b x+c$ and again you are told that $a b$ and c are constant and x is variable; note that both the variable and its square are in the expression. These types of expressions are called quadratic polynomials.

By fixing the values of $a b$ and c we get different quadratic polynomials.

For example, by setting $a=5 b=-2$ and $c=1$ we get $5 x^{2}-2 x+1 \ldots$

Identify the type, constants and variables in the following expressions
(1) $5 x+2$
(2) $x^{2}+6 x-5$
(3) $2 t^{2}+3 t+6$
(9) $q u+p u^{2}+r$ (you are told that u is the variable)
(3) $y^{2}+6$

Answers

Recall that $a x+b$ is a Linear polynomial and $a x^{2}+b x+c$ is a Quadratic polynomial
(1) $5 x+2$

Linear, variable x, constants $a=5, b=2$
(2) $x^{2}+6 x-5$

Quadratic, variable x, constants $a=1, b=6, c=-5$
(3) $2 t^{2}+3 t+6$

Quadratic, variable t, constants $a=2, b=3, c=6$
(9) $q u+p u^{2}+r$

Quadratic, variable u, constants $a=p, b=q, c=r$
(6) $y^{2}+6$

Quadratic, variable y, constants $a=1, b=0, c=6$

General Polynomials

We can consider expressions which contains higher powers of a given variable, say ' x ' in the form $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where, $a_{n}, a_{n-1}, \ldots a_{1}, a_{0}$ are all constants.

The highest power of the variable is called the degree of the polynomial.

For example:
A linear polynomial is a polynomial of degree 1
A quadratic polynomial is a polynomial of degree 2
$x^{3}+2 x^{2}+3$ is a polynomial of degree 3

Identify the degree and constants of the following polynomials
(1) $5 x^{4}+6 x^{3}+3 x^{2}+2 x+2$
(2) $-3 x^{6}+9 x^{3}+3 x-1$
(3) $2 t^{2}+3 t$
(1) $3 x+4 x^{3}+2 x^{2}+5 x^{4}+1$
(5) $3 x^{2}+4 x+2 x+5+2$

Answers

Compare with $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
(1) $5 x^{4}+6 x^{3}+3 x^{2}+2 x+2$

Degree $=4, a_{4}=5, a_{3}=6, a_{2}=3, a_{1}=2, a_{0}=1$
(2) $-3 x^{6}+9 x^{3}+3 x-1$

Degree $=6, a_{6}=-3, a_{5}, a_{4}=0, a_{3}=9, a_{2}=0, a_{1}=3$, $a_{0}=-1$
(3) $2 t^{2}$

Degree $=2, a_{2}=2, a_{1}=0, a_{0}=0$
(1) $3 x+4 x^{3}+2 x^{2}+5 x^{4}+1$

Degree $=4, a_{4}=5, a_{3}=4, a_{2}=2, a_{1}=3, a_{0}=1$
(6) $3 x^{2}+4 x+2 x+5+2$

First simplify the polynomial $3 x^{2}+6 x+7$
Degree $=2, a_{2}=3, a_{1}=6, a_{0}=7$

Evaluating Polynomials

Just like in our " \square " example earlier, given a polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, and the value of the variable x, you have to put the given value in every place x appears.

Evaluate the following polynomials at the given values
(1) $2 x^{2}+3 x+1$ at $3, t, \diamond$
(2) $2 x^{3}-3 x+1$ at $1, \boldsymbol{\varphi},-2$
(3) $4 x-3$ at $3 / 4, x+h, 0$
(9) $3 x^{2}+x-4$ at $4, x+h, x^{2}$

QUIZ

QUIZ TIME...

Instructions: Please DO NOT write your name on the answer paper.

This is just a survey.
(1) What is your current standing in the university? (Freshman, Sophomore, Junior or Senior)
(2) Why are you taking this class?
(Required/Recommended/Good for the career/As a prerequisite for calculus/FOR FUN, etc)
(3) What are your comments about today's class?

