MATH1550: Precalculus

Lecture 02

August 27, 2010

Recap of last class

We talked about
(1) Natural numbers, integers, rational numbers, irrational numbers and real numbers
(2) Variables and constants
(3) Introduced linear, quadratic and general polynomials $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$

My plan for the next few days

I hope review some important concepts, mostly the material in Appendices of the book. But I may not follow the same order, in particular, I will go through Appendix B, then come back to A. I may add a few more review topics on top of what is given in the book.

Missed out in last class ...
 Substituting "values" to a variable

We can give a name to a mathematical expression of a variable, similar to naming variables. For example we may write
$p(x)=2 x^{2}+4 x+6$;

- p is the actual name of the expression
- the parenthesized x denotes the variable.

If we write $p(2)$, it means, we want to evaluate $p(x)$ at $x=2$. This means, we need to "plug in" (called substituting) 2 in place all x 's in the expression.

For our example, therefore,
$p(2)=2(2)^{2}+4(2)+6=(2 \times 4)+(4 \times 2)+6=8+8+6=22$

Now try it yourself...

Given $p(x)=2 x^{2}+4 x+6$ find the following
(1) $p(\boldsymbol{\phi})$
(2) $p(\diamond+\boldsymbol{\phi})$
(3) $p(y+z)$
(4) $p(y+1)$
(6) $p\left(x^{2}\right)$
(0) $p(x+h)$

Answers

Given $p(x)=2 x^{2}+4 x+6$:
(1) $p(\boldsymbol{\phi})=2 \boldsymbol{\phi}^{2}+4 \boldsymbol{\phi}+6$
(2) $p(\diamond+\boldsymbol{\phi})=2(\diamond+\boldsymbol{\phi})^{2}+4(\diamond+\boldsymbol{\phi})+6$
(3) $p(y+z)=2(y+z)^{2}+4(y+z)+6$;

We can simplify this a bit more...

$$
\begin{aligned}
& =2(y+z)(y+z)+4(y+z)+6 \\
& =2(y \cdot y+y \cdot z+z \cdot y+z \cdot z)+4(y+z)+6 \\
& =2\left(y^{2}+2 y z+z^{2}\right)+4 y+4 z+6 \\
& =2 y^{2}+4 y z+2 z^{2}+4 y+4 z+6
\end{aligned}
$$

(a) $p(y+1)=2(y+1)^{2}+4(y+1)+6$ Let's be clever here! This is similar to the previous one... but with z replaced by 1 . We can get the answer quickly (from the previous one), by substituting 1 to $z \ldots$:)

$$
\begin{aligned}
& =2 y^{2}+4 y(1)+2(1)^{2}+4 y+4(1)+6 \\
& =2 y^{2}+4 y+2+4+6=2 y^{2}+4 y+12
\end{aligned}
$$

Answers continued...

Given $f(x)=2 x^{2}+4 x+6$:
(6) $p\left(x^{2}\right)=2\left(x^{2}\right)^{2}+4\left(x^{2}\right)+6=2 x^{4}+4 x^{2}+6$
(6) $p(x+h)=2(x+h)^{2}+4(x+h)+6$

$$
=2(x+h)(x+h)+4(x+h)+6
$$

$$
=2(x \cdot x+x \cdot h+h \cdot x+h \cdot h)+4(x+h)+6
$$

$$
=2\left(x^{2}+2 h x+h^{2}\right)+4 x+4 h+6
$$

$$
=2 x^{2}+4 h x+2 h^{2}+4 x+4 h+6
$$

A failsafe method for Substituting values to a variable

Given $p(x)=2 x^{2}+4 x+6 ;$ find $p(y+z)$
Replace x by the whole term you have to substitute, including the parenthesis/brackets.

This will avoid a lot of confusion!

A possible mistake:
$p(y+z)=2 y+z^{2}+4 y+z+6 \quad$ WRONG!

With the trick above:
$p(y+z)=2(y+z)^{2}+4(y+z)+6 \quad$ CORRECT!

Review of Real Numbers

Remember the following rules...
Let a and b be two real numbers then,
(1) $0 \cdot a=0$
(2) $-a=(-1) \cdot a$
(3) $-(-a)=a$
(9) $a \cdot(-b)=-(a b)$
(6) $(-a) \cdot(-b)=a b$

Review of Exponents

Given a number a and exponent n, i.e. a^{n}, it means ...

- If n is a positive integer $(1,2,3, \ldots)$,

$$
a^{n}=\underbrace{a \cdot a \cdot a \ldots a \cdot a}_{n \text {-times }}
$$

- If $n=-1$

$$
a^{-1}=\frac{1}{a}
$$

- If n is a positive integer $(1,2,3, \ldots)$,

$$
a^{-n}=\frac{1}{a^{n}}=\underbrace{\frac{1}{a \cdot a \cdot a \cdot \ldots \cdot a}}_{n \text {-times }}
$$

(so that $-n$ is a negative integer)

Zero Exponent

For any number a, we define $a^{0}=1$, as long as $a \neq 0$ 0^{0} is undefined!

Laws of Exponents

Remember the following rules...
Let a and b be two real numbers, and n and m be two integers,
(1) $a^{m} a^{n}=a^{m+n}$
(2) $\left(a^{m}\right)^{n}=a^{m n}$
(3) $\frac{a^{m}}{a^{n}}=a^{m-n}$
(9) $(a b)^{m}=a^{m} b^{m}$

A Practical Use of Exponents: Scientific Notation

The scientific notation is a very convenient way to represent very large or very small numbers.

For example, $0.00000001235=1.235 \times 10^{-8}$
or, $1235000000000=1.235 \times 10^{12}$

Review of $n^{\text {th }}$ Roots

Given a real number a, the " nth root of a " is a number b such that

$$
b^{n}=a
$$

Then we call b to be an $n^{\text {th }}$ root of a.

- Both $1 / 4$ and $-1 / 4$ are square roots (i.e. the second roots) of $1 / 16$, because, $4^{2}=16$ and $(-4)^{2}=16$.
- 3 is a cube roots (i.e. the third root) of 27 , because, $3^{3}=27$; in fact, 3 is the only real cube root of 27 .
- -0.2 is a $5^{\text {th }}$ root -0.00032 , because, $(-0.2)^{5}=-0.00032$; in fact, -0.2 is the only real $5^{\text {th }}$ root of -0.00032 .
- Both 2 and -2 are $4^{\text {th }}$ roots (i.e. the second roots) of 16 , because, $2^{4}=16$ and $(-2)^{4}=16$. In fact, these are the only two real $4^{\text {th }}$ roots of 16
- -4 does not have a real square root because there is no real number a such that $a^{2}=-4$

Principal $n^{\text {th }}$ Root

We can make a few observations from the previous examples:

- Negative real numbers does not have real even roots
- Even numbered roots of positive real numbers always occur in pairs; one positive and one negative
- (Real valued) odd numbered roots are unique, and odd numbered root of a positive number is positive, and and odd numbered root of a negative number is negative.

To avoid the ambiguity of the even numbered roots of positive real numbers, we introduce the notion of principal $n^{\text {th }}$ root. The principal $n^{\text {th }}$ root, for even n, is simply the positive $n^{\text {th }}$ root. For other cases, there is no ambiguity. So, the principal root and the real root are the same.
The principal $n^{\text {th }}$ root is denoted by the "radical" sign $\sqrt[n]{ }$ The principal square root is denoted just by

Principal $n^{\text {th }}$ Root: Examples

- $\sqrt{25}=5$ because $5^{2}=5 \times 5=25$, and 5 is the principal square root of 25 .
- Eventhough $(-5)^{2}=25$, it is WRONG to write $\sqrt{25}=-5$ according to the definition of $\sqrt{ }$; since -5 is not the principal square root of 25 .
- $\sqrt[4]{16}=2$ because $2^{4}=16$, and since 2 is the principal $4^{\text {th }}$ root of 16 .
- Eventhough $(-2)^{4}=16$, it is WRONG to write $\sqrt[4]{16}=-2$ according to the definition of $\sqrt[4]{ }$; since -2 is not the principal $4^{\text {th }}$ root of 16 .
- $\sqrt[3]{-125}=-5$ because $(-5)^{4}=125$, and it is unique.

