MATH1550: Precalculus

Lecture 06

Tuesday, September 02, 2010

Recap of last class

Rectangular (or Cartesian) coordinates are used to specify a location of a point in space with respect to a horizontal line (called the \mathbf{x}-axis) and a vertical line (called the \mathbf{y}-axis); just like you would talk about a location in Lubbock as the intersection of a street and an avenue. The point of intersection of the x - and y-axes is called the origin. The origin is usually, for obvious reasons, denoted by letter 0 .

The location of points are denoted by listing first the distance along the x-axis (to the right) followed by the distance along the y-axis (up). For example the point shown in green has coordinates $(2,3)$. Conversely, $(2,3)$ means that, if you go 2 units to the right (along the x-axis) and 3 units up (along the y-axis), you will end up on the green point.

Since we take the distance to the right along the x-axis as positive, the distance to the left along the x - axis is taken as negative. Similarly, since we take the distance up along the y - axis as positive, the distance down along the y-axis is taken as negative.
As such, the red colored point has coordinates $(-3,1)$ because it is 3 units to the left and 1 unit up.
The blue colored point has coordinates $(-1.5,-2.5)$ because it is 1.5 units to the left and 2.5 unit down.
The origin shown in purple has coordinates $(0,0)$. (WHY?)

Representing data on a rectangular coordinate system

Year	Population (Billions)
1965	3.345
1975	4.086
1985	4.850
1995	5.687

Data from the textbook, p.23; U.S. Census Bureau

t	P
0	3.345
10	4.086
20	4.850
30	5.687

Since we are interested in studying the variation of population over the years, we represent the "Year" by the x-axis, and the population by the y-axis. If we try to represent the "zeroth year" abd "zero population" by the origin, we will have an awkward looking graph. Therefore, we can plot the "time since 1965 " and population, to have a better looking graph.
Now we can plot the variation of population (abbreviated ' P ') with the "years since 1965" (abbreviated ' t ') on the coordinate axis.
Each point shown on the graph has ' t ' units left and ' P ' units up.

Distance between two points on a rectangular coordinate system

Given any two points on a rectangular coordinate system, note that we can construct a Right angled Triangle. As soon as we haw a right angled triangle, we can use the famous Pythagorean Theorem to find the distance between two points.

The distance d between points P and Q is:

$$
\begin{aligned}
d & =\sqrt{\left(x_{Q}-x_{P}\right)^{2}+\left(y_{Q}-y_{P}\right)^{2}} \\
d & =\sqrt{(-3-2)^{2}+(1-3)^{2}} \\
& =\sqrt{5^{2}+2^{2}} \\
& =\sqrt{25+4} \\
\therefore d & =\sqrt{29}
\end{aligned}
$$

Usually, the line segment joining a point P and a point Q is written as line segment $P Q$.

Can you find the lengths of the line segments $P R, O R O P, R Q$, and $R R$?

The midpoint M of the line segment $P Q$ is given by

$$
\begin{aligned}
M & =\left(\frac{x_{P}+x_{Q}}{2}, \frac{y_{P}+y_{Q}}{2}\right) \\
& =\left(\frac{2+(-3)}{2}, \frac{3+1}{2}\right) \\
& =\left(\frac{-1}{2}, \frac{4}{2}\right) \\
\therefore M & =(-0.5,2)
\end{aligned}
$$

Can you find the midpoints of the line segments $P R, O R O P, R Q$, and RR?

Given the points P and Q here, can you find the coordinates of the point R, such that $\frac{\text { Length of } R Q}{\text { Length of } P R}=\frac{5}{2}$?

Think about a much simpler problem: If you are given two numbers a and b, (assume $b>a$) how would you find number c such that $\frac{c-a}{b-c}=\frac{p}{q}$?
You can solve this simpler problem in two steps...
(1) First convert the ratio to a fraction of the total length $b-a$:

Note that $c-a=(b-a) \frac{p}{(p+q)}$
(2) Then, take a over to the right hand side:

We get $c=a+(b-a) \frac{p}{(p+q)}$
Numerical example:
Given the two numbers 3 and 21 , find the number x such that $\frac{x-3}{21-x}=\frac{2}{7}$.
(1) First convert the ratio to a fraction of the total length $21-3=18$:

Note that $x-3=(21-3) \frac{2}{(2+7)}=\frac{(18)(2)}{9}=4$
(2) Then, take a over to the right hand side

Hence, we get $x=3+4=7$
CHECK THE SOLUTION: $x-3=7-3=4$ and $21-x=21-7=14$. So, $\frac{x-3}{21-x}=\frac{4}{14}=\frac{2}{7}$

Extend the same argument to solve the original problem. This time, working on the x - and y-coordinates separately.
Restate problem in numbers and words: Given $P=(9,10)$ and $Q=(-5,3)$,
Find $R=\left(x_{r}, y_{r}\right)$ such that the ratio of length of line segments $\frac{R Q}{P R}=\frac{5}{2}$.
First find x_{r} :
Since $x_{p}=9>-5=x_{q}$, we must have $\frac{\left(x_{r}-x_{q}\right)}{\left(x_{p}-x_{r}\right)}=\frac{5}{2}$. (If by some chance, we had $x_{p}<x_{q}$, we should write $\left.\frac{\left(x_{q}-x_{r}\right)}{\left(x_{r}-x_{p}\right)}\right)$
Therefore, $x_{p}-x_{r}=9-x_{r}=(9-(-5)) \frac{2}{(2+5)}=\frac{(14)(2)}{7}=4$, hence
$9-x_{r}=4$. Solving for x_{r}, we get $x_{r}=5$.
(Similarly, we could have worked with $x_{r}-x_{q}$ and get the same answer. I leave it for you to do this as an exercise.)
Then find y_{r} :
Since $y_{p}=10>3=y_{q}$, so we must write $\frac{\left(y_{r}-y_{q}\right)}{\left(y_{p}-y_{r}\right)}=\frac{5}{2}$.
Therefore, $y_{p}-y_{r}=10-x_{r}=(10-3) \frac{2}{(2+5)}=\frac{(7)(2)}{7}=2$, hence
$10-y_{r}=2$. Solving for y_{r}, we get $y_{r}=8$.
Therefore, the coordinates of the required point $R=(5,8)$.

Method Summary: Divide the horizontal and vertical difference of coordinates to the given ratio.

$$
\begin{aligned}
\text { Length of segment PR } & =\sqrt{\left(x_{p}-x_{r}\right)^{2}+\left(y_{p}-y_{r}\right)^{2}} \\
& =\sqrt{(9-5)^{2}+(10-8)^{2}} \\
& =\sqrt{4^{2}+2^{2}} \\
& =\sqrt{16+4} \\
& =\sqrt{20} \\
\text { Length of segment RQ } & =\sqrt{\left(x_{r}-x_{q}\right)^{2}+\left(y_{r}-y_{q}\right)^{2}} \\
& =\sqrt{(5-(-5))^{2}+(8-3)^{2}} \\
& =\sqrt{10^{2}+5^{2}} \\
& =\sqrt{100+25} \\
& =\sqrt{125}
\end{aligned}
$$

$\frac{\text { Length of segment } R Q}{\text { Length of segment PR }}=\frac{\sqrt{125}}{\sqrt{20}}=\sqrt{\frac{125}{20}}=\sqrt{\frac{25}{4}}=\frac{\sqrt{25}}{\sqrt{4}}=\frac{5}{2}$

Graphing Mathematical Expressions

Given a mathematical expression $p(x)$ of a variable x, we can compute the value of $p(x)$ corresponding to a "few" values of x and use them to plot the graph of $p(x)$ versus x.

Example: Draw the graph of $p(x)=2 x+1$

x	$p(x)$
-5	-9
-4	-7
-3	-5
-2	-3
-1	-1
0	1
1	3
2	5
3	7
4	9
5	11

Lines

Physical Interpretation

The shortest path between two distinct points is a line. In other words, given two distinct points, we can draw a unique line joining them.

Slope or Gradient (notation: m)

How much tilted or inclined a line is compared to the x-axis. "How much does a line go up when it goes one unit to the right?"
x Intercept
Where a line cuts (i.e. intersects) the x-axis.
"What is the x-value when $y=0$?"
y Intercept (notation: c)
Where a line cuts (i.e. intersects) the y-axis.
"What is the y-value when $x=0$?"

Can you find the Slope and x - and y - intercepts ?

We can draw a unique strait line if we know:
(1) two distinct points the line goes through
(2) a point the line goes through and its slope

It is very convenient to use an intercept (usually the y-intercept) as "the point" in the second option.

If we can draw a unique line when we are given one of these two cases, we can write down a mathematical equation for line in these two cases!

A nice observation about lines: "The slope of a given line never changes from point to point"

Note that the the y-value does not change with the x-value for horizontal lines and the x-value does not change with the y-value for vertical lines. Therefore, we can specify a horizontal line uniquely using the y-value and a vertical line uniquely by its x-value.
For example, the equation of line 1 will be $y=3$. How about the others?
What will be the equations of the x - and y-axes?

Understanding the slope of a line

Slope tells "how many units a line goes up, when it goes one unit to the right"
In particular, if the slope is m, then, the line goes up m units, when it goes one unit to the right.

If a line has $m=2$, then it goes 2 units up for each unit it goes to the right.
Equivalently, it goes 2 units down for each unit it goes to the left.
If a line has $m=-3$, then it goes -3 units up (i.e. 3 units down) for each unit it goes to the right.
Equivalently, it goes 3 units up for each unit it goes to the left.
If a line has $m=0$, then it goes 0 units up for each unit it goes to the right (i.e. continues to run horizontal).

Finding the equation of a line

Given: The y-intercept (c) and the slope (m).

$$
y=m x+c
$$

Finding the equation of a line

Given: A point $\left(x_{1}, y_{1}\right)$ the line goes through and the slope (m)

$$
y=m\left(x-x_{1}\right)+y_{1}
$$

Finding the equation of a line

Given: Two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ the line passes through.

We do not know the slope but we can calculate it using the data:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Then using the previous method to write the equation: $y=m\left(x-x_{1}\right)+y_{1}$

$$
y=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)+y_{1}
$$

The "slope-intercept" version $(y=m x+c)$ is the most famous form of representing the equation of a line. But it's not possible represent vertical lines using this form (WHY?).
$A x+B y+C=0$ is called the general equation of a line, because, it can be used to represent ANY straight line.

When $B \neq 0$, we can write

$$
\begin{equation*}
y=\left(\frac{-A}{B}\right) x+\left(\frac{-C}{B}\right) \tag{1}
\end{equation*}
$$

Which is in the slope-intercept form, with $m=-A / B$ and $c=-C / B$.
When $B=0$, we can write

$$
\begin{equation*}
x=\frac{-C}{A} \tag{2}
\end{equation*}
$$

Which is in the equation of a vertical line.

- Two lines are parallel if they have the same slope
- Two lines are perpendicular if $m_{1}=-1 / m_{2}$, where m_{1} and m_{2} are the slopes of the two lines. (i.e. the slope of one line should be the negative reciprocal slope of the the other)

Examples:

- Two vertical lines are parallel and two horizontal lines are parallel
- A horizontal line and a vertical line are perpendicular
- The two lines $x+2 y+1=0$ and $2 x-y+5=0$ are perpendicular
- The two lines $y=3 x+4$ and $9 x-3 y+4=0$ are parallel

Exercise:

Given the line $2 x-y+1=0$
(1) Find the line which is parallel to it and passes through the origin
(2) Find the line which is perpendicular to it and passes through through the point $(1,-1)$
(3) Can the line which passes through $(1,1)$ and $(2,2)$ be perpendicular or parallel to it?

Symmetry about the x-axis

(x, y) and $(x,-y)$ are both points on the graph.
"Replacing y by $-y$ does not change the equation"

Symmetry about the y-axis

(x, y) and $(-x, y)$ are both points on the graph.
"Replacing x by $-x$ does not change the equation"

Symmetry about the origin

(x, y) and $(-x,-y)$ are both points on the graph.
"Replacing x by $-x$ and y by $-y$ together does not change the equation"

Symmetry of Graphs: Some Examples

$x=y^{2}$
Substituting $y=-y$;
$x=(-y)^{2}=y^{2}$

$y=x^{2}$
Substituting $x=-x$;
$y=(-x)^{2}=x^{2}$

$y=x^{3} / 4$
Substituting $x=-x$ and $y=-y$;
$-y=(-x)^{3} / 4$;
We get $-y=-x^{3} / 4$;
Which becomes
$y=x^{3} / 4$

Consider a graph defined by the equation $x^{2}+y^{2}=4$. Then,
(1) It is symmetric about the x-axis. Because, if we substitute $y=-y$, we get, $x^{2}+(-y)^{2}=4$; which is identical to $x^{2}+y^{2}=4$.
(2) It is symmetric about the y-axis. Because, if we substitute $x=-x$, we get, $(-x)^{2}+y^{2}=4$; which is identical to $x^{2}+y^{2}=4$.
(3) It is symmetric about the origin. Because, if we substitute $x=-x$, and $y=-y$ we get, $(-x)^{2}+(-y)^{2}=4$; which is identical to $x^{2}+y^{2}=4$.

Do you know what this equation describes?

A circle is the path of a point which moves at a constant distance (radius) away from a fixed point (center).
If (h, k) is the fixed point and if r is the radius, for any point (x, y) on the circle we should have

$$
\sqrt{(x-h)^{2}+(y-k)^{2}}=r
$$

If we square both sides, we get

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

If we had $h=0, k=0$ (i.e. the center is the origin) and $r=2$ we get the circle in the previous example.

