MATH1550: Precalculus

Lecture 08: Section 2.2

The "OTHER" Types of Equations

In this section we discuss the following types of Equations
(1) Equations involving absolute value
(2) Equations involving $n^{\text {th }}$ exponents/roots
(3) Equations of "quadratic type"

We start the discussion with some unfinished discussion of absolute values and the graphical interpretation of solutions.

Graphical Interpretation of "Solutions" of an Equation: The Story of "Intersection" of Graphs

Suppose you are given an equation $p(x)=q(x)$.
Plot $y=p(x)$ and $y=q(x)$ on the same axis frame.
The solution(s) of $p(x)=q(x)$ is given by precisely the point(s) of intersection of the two graphs $y=p(x)$ and $y=q(x)$.

The number of points of intersection will tell us the number of distinct solutions.

In particular, if the two graphs $y=p(x)$ and $y=q(x)$ does not intersect, it means that the equation $p(x)=q(x)$ does not have any solutions.

On the other hand, if the two graphs $y=p(x)$ and $y=q(x)$ overlap on some interval, then the entire region will be valid solutions for the given equation.

Graphical Solutions of Equations

Consider the equation $x^{2}=x$. You can recognize that this can be written as the quadratic equation $x^{2}-x=0$, which can be solved by factoring: $x(x-1)=0$; so that the solutions are $x=0$ or $x=1$.
We can solve this by graphically in two ways.

Method 1:
Plotting $y=x^{2}$ (in blue) and $y=x$ (in red)

Method 2:
Plotting $y=x^{2}-x$ (in blue) and
$y=0$ (in red)

Either way, we get the same two solutions, $x=0$ or $x=1$.

What can you say about these graphs?

Given below are 4 equations of the form $p(x)=q(x)$ which we try to solve graphically. The red color graph is $y=q(x)$, which is $y=0$ in all except in (2). The blue color graph is $y=p(x)$.
(1) $x^{2}+x+1=0$

(3) $|x|=0$

(2)

(4)

Equations Involving Absolute Value

Problem: Variable is inside absolute value sign.
Examples:
(1) $|2 x-1|+7=0$
(2) $\left|x^{2}-2 x\right|+2 x=4$
(3) $|x+1|-|3 x-2|=0$
(9) $|x+1||x-2|=1$

Two techniques:
(1) Rewrite the equation removing the absolute values

- Disadvantages: Lot of book-keeping.
- Advantages: Does not make the equation any more completed.
(2) Take the square
- Disadvantages: Can make the equation a lot more complicated than what was started with. Introduces a lot of spurious solutions. May have to apply repeatedly.
- Advantages: Not much of book-keeping.

Equations involving $n^{\text {th }}$ exponents/roots

Solve the following equations. Check if all the solutions you obtained are valid.
(1) $(x-2)^{2}-9=0$ (Hint: Use definition)
(2) $(x+4)^{3}+8=0$ (Hint: Use definition)
(3) $3 x^{3}-12 x^{2}-15 x=0$ (Hint: Use factorization)
(4) $x^{4}+x^{2}-6=0$ (Hint: Set $X=x^{2}$ and factoring/quadratic formula)
(5) $x^{4}-6 x^{2}+4=0$ (Hint: Set $X=x^{2}$ and factoring/quadratic formula)
(6) $6 x^{-2}-x^{-1}-2=0$ (Hint: Set $X=x^{2}$ and factoring/quadratic formula)
(7) $2 x^{4 / 3}-x^{2 / 3}-6=0$ (Hint: Set $X=x^{2 / 3}$ and factoring/quadratic formula)
(8) $x-2=\sqrt{x}$ (Hint: Set $X=\sqrt{x}$ and factoring/quadratic formula)
(9) $x+x^{-1}-2=0$ (Hint: Multiply by x and factoring/quadratic formula)
(10) $\sqrt{\frac{x-a}{x}}+4 \sqrt{\frac{x}{x-a}}=5$ (Hint: First set $X=\sqrt{\frac{x-a}{x}}$ then multiply by X and factoring/quadratic formula)

Equations of quadratic type

Solve the following equations. Check if all the solutions you obtained are valid. In some cases, there could be Extraneous Solutions.
(1) $\sqrt{x-3}=5$
(2) $x-2=\sqrt{x}$
(3) $x-2=-\sqrt{x}$
(4) $\sqrt{x-5}-\sqrt{x+4}+1=0$
(5) $\sqrt{x-5}-\sqrt{x+4}-1=0$
(0) $\sqrt{x-5}+\sqrt{x+4}+1=0$
(7) $\sqrt{x-5}+\sqrt{x+4}-1=0$
(8) $\sqrt{x+2}=x-4$
(9) $\sqrt{2 x-3}-\sqrt{3 x+3}+\sqrt{3 x-2}=0$
(10) $\sqrt{a-x}+\sqrt{b-a}=\sqrt{a+b-2 x}$ where, $b>a>0$

