MATH1550: Precalculus

Sections 2.3 \& 2.4: Inequalities

Given Problem:

Two mathematical expressions $p(x)$ and $q(x)$, related by $<,>, \leq$ or \geq. e.g. $p_{1}(x)>q_{1}(x), p_{2}(x)<q_{2}(x), p_{3}(x) \leq q_{3}(x)$ or $p_{4}(x) \geq q_{4}(x)$.

Examples:

(1) $x-3<0$
(2) $(x+1)(x+4) \geq x$
(3) $\frac{3}{x}-2 \leq 0$
(4) $|2-3 x|>5$

Expected "Solution":

Find a region of values for the variable x so that the inequality is satisfied.

CAUTION!!!

- Consider the following examples:
- Clearly, $-3<-2$. If we multiply the numbers by -1 , we get $3>2$. (i.e. Flipping the sign flips the inequality)
- Clearly, $\frac{1}{4}<\frac{1}{2}$. If take the reciprocal, we get $4>2$. (i.e. Taking the reciprocal flips the inequality)
- The following operations will not change the inequality
- Adding or subtracting the same quantity to both sides
- Multiplying or dividing by a positive, nonzero quantity
- Simplifying either side of of the inequality
- The following operations will flip the sign (i.e. $>$ with $<$, and \geq with \leq)
- Multiplying or dividing by a negative, nonzero quantity
- Taking the reciprocal
- Inequalities involving absolute values: rewrite expressions to eliminate absolute value sign. This requires splitting in to intervals.
(1) $2 x-7<11 \quad$ (p.110: ex. $2.3-$ prob 1$)$
(2) $6-4 x \leq 22 \quad$ (p.110: ex. $2.3-$ prob 2)
(3) $\frac{3 x}{5}-\frac{x-1}{3}<1 \quad$ (p.110: ex. 2.3 - prob 5$)$
(4) $0.99<\frac{x}{2}-1<0.999 \quad$ (p.110: ex. $2.3-$ prob 11)
(5) $\begin{array}{ll}|x-4| \geq 4 & \text { (p.110: ex. } 2.3 \text { - prob 20.b) }\end{array}$
(6) $\left|\frac{x-2}{3}\right|<4 \quad$ (p.110: ex. $2.3-$ prob 25$)$
(7) $\left|\frac{3(x-2)}{4}+\frac{4(x-1)}{3}\right| \leq 2 \quad$ (p.110: ex. $2.3-$ prob 28)
(8) $|x-1|+|x-2|<3 \quad$ (p.111: ex. $2.3-$ prob 38)

Polynomial/Quotient Type Inequalities

Example: $(x-2)(x+4)>0$
Step 1: Rewrite the inequality so that the polynomial or the quotient is on the left-hand side and the zero is on the right hand side.
Already done
Step 2: Find the key numbers (numbers at which the polynomial/quotient becomes zero or goes undefined), and locate them on the number line.
Set $(x-2)(x+4)=0$ and solve for x : we get $x=2$ or $x=-4$.

Step 3: List the intervals determined by the key numbers $(-\infty,-4),(-4,2)$ and $(2, \infty)$
Step 4: Using a test point from each region, construct the table of signs and use it to identify the solution region(s)

Interval	Test Num.	$(x-2)$	$(x+4)$	$(x-2)(x+4)$
$(-\infty,-4)$	-5	$n e g$.	$n e g$.	pos.
-4	-4	$n e g$.	0	0
$(-4,2)$	0	$n e g$.	pos.	$n e g$.
2	2	0	pos.	0
$(2, \infty)$	3	pos.	pos.	pos.

Solution: $(-\infty,-4)$ or $(2, \infty)$

Polynomial/Quotient Type Inequalities

Example: $\frac{(x-2)}{(x+4)} \geq 0$
Step 1: Rewrite the inequality so that the polynomial or the quotient is on the left-hand side and the zero is on the right hand side. Done

Step 2: Find the key numbers (numbers at which the polynomial/quotient becomes zero or goes undefined), and locate them on the number line.
First note that the left hand side is not defined for $x=-4$. Set $\frac{(x-2)}{(x+4)}=0$ and solve for x : we get $x=2$. Key points are $x=-4$ and $x=2$.

Step 3: List the intervals determined by the key numbers
$(-\infty,-4),(-4,2)$ and $(2, \infty)$
Step 4: Using a test point from each region, construct the table of signs and use it to identify the solution region(s)

Interval	Test Num.	$(x-2)$	$(x+4)$	$\frac{(x-2)}{(x+4)}$
$(-\infty,-4)$	-5	$n e g$.	$n e g$.	pos.
-4	-4	$n e g$.	0	UNDEFINED
$(-4,2)$	0	$n e g$.	pos.	$n e g$.
2	2	0	pos.	0
$(2, \infty)$	3	pos.	pos.	pos.

Solution: $(-\infty,-4)$ or $[2, \infty) \quad$ (NOTE: 2 is included because of \geq)

Polynomial/Quotient Type Inequalities

Example: $(x+1)^{2} \leq x$
Step 1: Rewrite the inequality so that the polynomial or the quotient is on the left-hand side and the zero is on the right hand side.
We have to simplify a bit:
Expand the square: $x^{2}+2 x+1 \leq x$; Subtracting x from both sides: $x^{2}+x+1 \leq 0$ Step 2: Find the key numbers (numbers at which the polynomial/quotient becomes zero or goes undefined), and locate them on the number line.
Look at the discriminant: $b^{2}-4 a c=1-(4)(1)(1)=-3<0$. So, no solutions. NO KEY POINTS $=$ NO SIGN CHANGES
Step 3: List the intervals determined by the key numbers $(-\infty, \infty)$ (WHY?)
Step 4: Using a test point from each region, construct the table of signs and use it to identify the solution region(s)

Interval	Test Num.	$x^{2}+x+1$
$(-\infty, \infty)$	0	pos.

Solution: NONE
No value of x will give the necessary inequality.
(1) $\begin{array}{ll}x^{2}+x-6<0 & \text { (p.120: ex. 2.4-prob 9) }\end{array}$
(2) $(x-1)(x+3)(x+4) \geq 0 \quad$ (p.120: ex. 2.4-prob 29)
(3) $x\left(1-x^{2}\right)^{4}+(x+3)\left(1-x^{2}\right)^{4} \geq 0 \quad$ (p.120: ex. 2.4 - prob 42)
(4) $\frac{2}{x}<\frac{x}{2} \quad$ (p.120: ex. 2.4 - prob 54)
(5) $\frac{x^{2}+3 x}{x^{2}+8 x+15}<0 \quad$ (p.120: ex. $2.4-$ prob 60$)$
(6) $2 x+2 \geq(x+1)(x+4) \geq x$

