MATH1550: Precalculus

Sections 2.3 & 2.4: Inequalities

Sections 2.3 & 2.4: Inequalities MATH1550: Precalculus

Introduction

Given Problem:

Two mathematical expressions p(x) and q(x), related by $<, >, \le$ or \ge . e.g. $p_1(x) > q_1(x)$, $p_2(x) < q_2(x)$, $p_3(x) \le q_3(x)$ or $p_4(x) \ge q_4(x)$.

Examples:

(1)
$$x - 3 < 0$$

(2) $(x + 1)(x + 4) \ge x$
(3) $\frac{3}{x} - 2 \le 0$
(4) $|2 - 3x| > 5$

Expected "Solution":

Find a region of values for the variable x so that the inequality is satisfied.

CAUTION!!!

- Consider the following examples:
 - Clearly, -3 < -2. If we multiply the numbers by -1, we get 3 > 2. (i.e. Flipping the sign flips the inequality)
 - Clearly, $\frac{1}{4} < \frac{1}{2}$. If take the reciprocal, we get 4 > 2. (i.e. Taking the reciprocal flips the inequality)
- The following operations will not change the inequality
 - Adding or subtracting the same quantity to both sides
 - Multiplying or dividing by a **positive**, **nonzero** quantity
 - Simplifying either side of of the inequality
- The following operations will flip the sign (i.e. > with <, and \ge with \le)
 - Multiplying or dividing by a negative, nonzero quantity
 - Taking the reciprocal
- Inequalities involving absolute values: rewrite expressions to eliminate absolute value sign. This requires splitting in to intervals.

Solve the Following Inequalities

1
$$2x - 7 < 11$$
 (p.110: ex. 2.3 - prob 1)

2 $6-4x \le 22$ (p.110: ex. 2.3 - prob 2)

3
$$\frac{3x}{5} - \frac{x-1}{3} < 1$$
 (p.110: ex. 2.3 - prob 5)

3
$$0.99 < \frac{x}{2} - 1 < 0.999$$
 (p.110: ex. 2.3 - prob 11)

5
$$|x-4| \ge 4$$
 (p.110: ex. 2.3 - prob 20.b)

6
$$\left|\frac{x-2}{3}\right| < 4$$
 (p.110: ex. 2.3 - prob 25)

a
$$\left| \frac{3(x-2)}{4} + \frac{4(x-1)}{3} \right| \le 2$$
 (p.110: ex. 2.3 - prob 28)

8 |x-1| + |x-2| < 3 (p.111: ex. 2.3 - prob 38)

Polynomial/Quotient Type Inequalities

Example: (x - 2)(x + 4) > 0

Step 1: Rewrite the inequality so that the polynomial or the quotient is on the left-hand side and the zero is on the right hand side.

Already done

Step 2: Find the key numbers (numbers at which the polynomial/quotient becomes zero or goes undefined), and locate them on the number line. Set (x - 2)(x + 4) = 0 and solve for x: we get x = 2 or x = -4.

Step 3: List the intervals determined by the key numbers $(-\infty, -4)$, (-4, 2) and $(2, \infty)$

Step 4: Using a test point from each region, construct the **table of signs** and use it to identify the solution region(s)

Interval	Test Num.	(x – 2)	(x + 4)	(x-2)(x+4)
$(-\infty, -4)$	-5	neg.	neg.	pos.
-4	-4	neg.	0	0
(-4,2)	0	neg.	pos.	neg.
2	2	0	pos.	0
$(2,\infty)$	3	pos.	pos.	pos.

Solution: $(-\infty, -4)$ or $(2, \infty)$

Polynomial/Quotient Type Inequalities

Example:
$$\frac{(x-2)}{(x+4)} \ge 0$$

Step 1: Rewrite the inequality so that the polynomial or the quotient is on the left-hand side and the zero is on the right hand side. Done

Step 2: Find the key numbers (numbers at which the polynomial/quotient becomes zero or goes undefined), and locate them on the number line.

First note that the left hand side is not defined for x = -4. Set $\frac{(x-2)}{(x+4)} = 0$ and solve for x: we get x = 2. Key points are x = -4 and x = 2.

$$-7$$
 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Step 3: List the intervals determined by the key numbers $(-\infty, -4)$, (-4, 2) and $(2, \infty)$

Step 4: Using a test point from each region, construct the table of signs and use it to identify the solution region(s)

Interval	Test Num.	(x – 2)	(x + 4)	$\frac{(x-2)}{(x+4)}$
$(-\infty, -4)$	-5	neg.	neg.	pos.
-4	-4	neg.	0	UNDEFINED
(-4,2)	0	neg.	pos.	neg.
2	2	0	pos.	0
$(2,\infty)$	3	pos.	pos.	pos.

Solution: $(-\infty, -4)$ or $[2, \infty)$ (NOTE: 2 is included because of \geq)

Example: $(x+1)^2 \le x$

Step 1: Rewrite the inequality so that the polynomial or the quotient is on the left-hand side and the zero is on the right hand side.

We have to simplify a bit:

Expand the square: $x^2 + 2x + 1 \le x$; Subtracting x from both sides: $x^2 + x + 1 \le 0$

Step 2: Find the key numbers (numbers at which the polynomial/quotient becomes zero or goes undefined), and locate them on the number line. Look at the discriminant: $b^2 - 4ac = 1 - (4)(1)(1) = -3 < 0$. So, no solutions. NO KEY POINTS = NO SIGN CHANGES

Step 3: List the intervals determined by the key numbers $(-\infty,\infty)$ (WHY?)

Step 4: Using a test point from each region, construct the table of signs and use it to identify the solution region(s) (

Interval	Test Num.	$x^2 + x + 1$
$(-\infty,\infty)$	0	pos.

Solution: NONE

No value of x will give the necessary inequality.

Solve the Following Inequalities

1
$$x^2 + x - 6 < 0$$
 (p.120: ex. 2.4 - prob 9)
 1 $(x - 1)(x + 3)(x + 4) \ge 0$ (p.120: ex. 2.4 - prob 29)
 1 $x(1 - x^2)^4 + (x + 3)(1 - x^2)^4 \ge 0$ (p.120: ex. 2.4 - prob 42)
 1 $\frac{2}{x} < \frac{x}{2}$ (p.120: ex. 2.4 - prob 54)
 1 $\frac{x^2 + 3x}{x^2 + 8x + 15} < 0$ (p.120: ex. 2.4 - prob 60)
 1 $2x + 2 \ge (x + 1)(x + 4) \ge x$