MATH1550: Precalculus

Supplementary Notes

Translations and Reflections of Functions (§3.4)

If the graph of a function is given as $y=f(x)$
(1) $y=f(x)+c$: Shift c units up
(2) $y=f(x)-c$: Shift c units down
(3) $y=f(x+c)$: Shift c units left
(3) $y=f(x-c)$: Shift c units right
(3) $y=-f(x)$: Reflection about the x - axis
(0) $y=f(-x)$: Reflection about the y - axis

CAUTION!!! If you are asked for $y=f(-x+c)$, first do the shifting then do the reflection.
I made a mistake here in the class. I have corrected it now.

The "mathematical" word for "shift" is "translation".

A nice online graphing calculator can be found here:
http://my.hrw.com/math06_07/nsmedia/tools/Graph_Calculator/graphCalc.html

Given $y=f(x)$, and asked to sketch $y=a f(b x+c)+d$.
(1) Identify the key points.
(2) Find the inverse of the term in parenthesis (i.e. term in parenthesis is $b x+c$, hence its inverse is $(x-c) / b)$. This inverse function will define how the "new" x will behave, compared to the "old" x. This is VERY important, but I think I did not do this - SORRY
(3) The "new" y will be given by simply $a y+d$.
(1) Now find how the key points are mapped using the inverse function for x and function for y.
(5) Plot the mapped key points on a graph.
(0) Complete the graph using the knowledge of the original graph.

Example

Given $y=f(x)$ in the graph, and asked to sketch $y=2 f(-3 x+2)$.

(1) Identify the key points.

Key points are: $(-1,0),(1,2)$ and $(2,0)$
(2) Find the inverse of the term in parenthesis (i.e. term in parenthesis is $b x+c$, hence its inverse is $(x-c) / b)$.
Inverse of the parenthesized term, $-3 x+2$ is clearly
new $X=\frac{(x-2)}{(-3)}$
(3) The "new" y will be given by simply ay $+d$.
new $Y=2 y$

Example continued...

(4) Now find how the key points are mapped using the inverse function for x and function for y.

Old x	Old y	New $x=\frac{x-2}{-3}$	New $y=2 y$
-1	0	$\frac{-1-2}{-3}=1$	$(2)(0)=0$
1	2	$\frac{1-2}{-3}=\frac{1}{3}$	$(2)(2)=4$
2	0	$\frac{2-2}{-3}=0$	$(2)(0)=0$

(5) Plot the mapped key points on a graph.
(6) Complete the graph using the knowledge of the original graph.

