MATH1550: Precalculus

Chapter 5

Exponential Functions ($\$ 5.1$)

Exponential Function with Base b

$y=b^{x}$ for $b>0$ and $b \neq 1$

Properties of Exponential Functions

- If $b^{x}=b^{y}$ then $x=y$ as long as $b \neq 1$.
- If $b>1$ the function is increasing.

The larger b is, the faster the function increases.

- If $0<b<1$ the function is decreasing.

The smaller b is, the faster the function decreases.

Graphs of Exponential Functions $y=b^{x}$

- has no x-intercept
- y-intercept is 1
- has a horizontal asymptote $y=0$ depending on $b>1$ or $b<1$
- Domain: all real numbers
- Range: POSITIVE real numbers

Mathematically the most useful base is ... e
$e \approx 2.71828182845904523536 \ldots$

This is an irrational number (like $\pi, \sqrt{2}$ etc.)
$\S 5.2$ talks more about this number e. Please read this section.
L.T.S. $=$ Left To Students

Graphing Exponential Functions

Use shifting, reflection and scaling to sketch the following functions
(1) $y=-3^{x}+3$
(2) $y=4^{x+1}-1$
(3) $y=-2\left(2^{-x+1}\right)+2$

Logarithmic Function (§5.3)

Logarithmic Function with base b

Informally, it is defined as the "inverse function" of the exponential function.
Given $x=b^{y}$, we write $y=\log _{b} x$,
(said "logaritm to/in base b of x " or simply "log b of x ")

If the base is $e(\approx 2.71828 \ldots)$, it is called the natural logarithm.
" $\log _{e} x$ " is often written " $\ln x$ "

Exercises

(c) Write in the logarithm form

- $\boldsymbol{m}^{\wedge}=\diamond$
(2) $2^{-5}=\frac{1}{32}$
(3) $3^{4}=81$
(1) $e^{4 t}=16$
(2) Write in the exponential form
(1) $\log _{\boldsymbol{\omega}} \diamond=\boldsymbol{\phi}$
(2) $\ln z=19$
(3) $\log _{4} 2=16$
(1) Evaluate
(1) $\log _{2} 8$
(2) $\log _{25} 1$
(3) $\ln e$
(2) $\log _{5} 5 \sqrt{5}$
- $\log _{4} \frac{1}{16}$
- $\log _{b} b^{a}$
(2) Solve
(1) $\log _{5} x=2$
(2) $\ln x=-e$
(3) $\log _{4} 16=x$

Graphs of Exponential Functions $y=b^{x}$

- has no y-intercept
- x-intercept is 1
- has a vertical asymptote $x=0$
- Domain: POSITIVE real numbers
- Range: All real numbers

Graphing Exponential Functions

Use shifting, reflection and scaling to sketch the following functions

$$
\begin{aligned}
& \text { (1) } y=\log _{3}(x-2)+1 \\
& \text { (2) } y=\ln (x+e) \\
& \text { (3) } y=-\log _{10}(x+1) \\
& \text { (1) } y=\log _{e}(-x)
\end{aligned}
$$

- When the base is the same as the argument the logarithm equals $1 . \log _{b} b=1$
- The logarithm of 1 is always $0 . \quad \log _{b} 1=0$
- When a base is raises to a logarithm with the same base the expression equals the argument.
$b^{\log _{b} x}=x$
- The logarithm of a product is equal to the sum of the logarithms of the factors. $\log _{b}(M N)=\log _{b} M+\log _{b} N$
- The logarithm of a quotient is the equal to the logarithm of the numerator minus the logarithm of the denominator.

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

- The logarithm of an argument with an exponent is equal to the exponent times the logarithm of the argument without the exponent.
$\log _{b} x^{n}=n \log _{b} x$
- The base of logarithm can be changed by dividing the logarithm with the wanted of the argument by the logarithm with the wanted base of the old base. $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
(1) Simplify to one logarithm
(1) $\log _{2} 9+\log _{2}\left(\frac{5}{18}\right)-\log _{2}\left(\frac{5}{2}\right)$
(2) $3 \ln 2-\ln 16+\frac{1}{3} \ln 8$
(2) Expand the following
(1) $\log _{b} \frac{\sqrt{1-x^{2}}}{x}$
(2) $\ln \frac{x^{2}}{\sqrt{1+x^{2}}}$
(0) $\log _{b} \sqrt[3]{\frac{x+3}{x}}$
(3) Solve the following equations. Express your answer in terms of natural logarithms
(1) $2^{x}=13$
(2) $3 e^{1+t}=2$
(3) $5^{3 x-1}=27$

Equations and Inequalities with Logarithms (§5.5)

Never take the logarithm/exponential of both sides
Rewrite in exponential or logarithmic form!
Look out for EXTRANEOUS ROOTS!

Solve the following equations
(1) $7^{-4 x}=2^{1+3 x}$
(2) $\log _{2}\left(2 x^{2}-4\right)=5$
(3) $\ln 4-\ln x=\frac{\ln 4}{\ln x}$
(4) $\log _{6} x+\log _{6}(x+1)=1$
(5) $\log _{2}\left(2 x^{2}+4\right)=5$
(6) $\log _{2}(x+a)-\log _{2}(a x)=1$

Equations and Inequalities with Logarithms

Preserving the inequality

- $p<q \Leftrightarrow b^{p}<b^{q}$
- $p<q \Leftrightarrow \log _{b} p<\log _{b} q$

Solve the following equations
(1) $2\left(1+0.4^{x}\right)<5$
(2) $\ln (2-3 x) \leq 1$
(3) $e^{2-3 x} \leq 1$
(4) $\log _{10} x+\log _{10}(x+2) \leq \log _{10} 24$

Compound Interest (§5.6)

Compound Interest Formula

Interest that is applied to the balance of an account at the end of a compounding period.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

- $A=$ amount: the amount in the account after interest is added
- $P=$ principal: the amount in the account before interest is added
- $r=$ interest rate: the interest rate in decimal form
- $n=$ number of compoundings per year:
- $t=$ time: the number of years

Interest Compoundings

- annually : $\mathrm{n}=1$
- semiannually: $\mathrm{n}=2$
- quarterly : $\mathrm{n}=4$
- monthly : $\mathrm{n}=12$
- weekly : $\mathrm{n}=52$
- daily : $n=365$

Continuously Compounded Interest

Continuously Compound Interest Formula

Interest that is constantly being compounded.

$$
A=P e^{r t}
$$

- $A=$ amount: the amount in the account after interest is added
- $P=$ principal: the amount in the account before interest is added
- $r=$ interest rate: the interest rate in decimal form
- $e=$ natural base: 2.71828...
- $t=$ time: the number of years

Exponential Growth and Decay (§5.7)

Exponential Growth and Decay Formula

Interest that is constantly being compounded.

$$
\mathcal{N}(t)=\mathcal{N}_{0} e^{k t}
$$

- $\mathcal{N}(t)=$ function notation for the size of a population at a given time
- $\mathcal{N}_{0}=$ the initial population
- $\mathbf{e}=$ natural base: 2.71828...
- $\mathbf{k}=$ growth or decay constant: the rate of growth or decay
- $\mathbf{t}=$ time: use the given units

