Pop Quiz

1. Given $p(x)=3 x^{2}+4 x$, find $p(x+2)$.
2. Simplify
(a) $\sqrt[3]{\frac{-8 b^{4}}{a^{3} b^{10}}}$
(b) $\sqrt{\frac{(-2)^{2}(x+1)^{4}}{(x+2)^{2}}}$

Answers

1. Given $p(x)=3 x^{2}+4 x$, find $p(x+2)$.

$$
\begin{aligned}
p(x) & =3 x^{3}+4 x \\
p(x+2) & =3(x+2)^{2}+4(x+2) \\
& =3(x+2)(x+2)+4(x+2) \\
& =3(x(x+2)+2(x+2))+4 x+8 \\
& =3\left(x^{2}+2 x+2 x+4\right)+4 x+8 \\
& =3\left(x^{2}+4 x+4\right)+4 x+8 \\
& =3 x^{2}+12 x+12+4 x+8 \\
p(x+2) & =3 x^{2}+16 x+20
\end{aligned}
$$

$$
p(x+2)=3 x^{2}+16 x+20
$$

Comments: This was, in general correctly done by almost all.
2. Simplify
(a) $\sqrt[3]{\frac{-8 b^{4}}{a^{3} b^{10}}}$

$$
\begin{aligned}
& \sqrt[3]{\frac{-8 b^{4}}{a^{3} b^{10}}}=\sqrt[3]{\frac{(-2)^{3} b^{4}}{a^{3} b^{10}}} \\
&=\sqrt[3]{\frac{(-2)^{3} b^{4} b^{-10}}{a^{3}}} \\
&=\sqrt[3]{\frac{(-2)^{3} b^{(4-10)}}{a^{3}}} \\
&=\sqrt[3]{\frac{(-2)^{3} b^{-6}}{a^{3}}} \\
&=\left(\frac{(-2)^{3} b^{-6}}{a^{3}}\right)^{1 / 3} \\
&=\frac{\left((-2)^{3}\right)^{1 / 3}\left(b^{-6}\right)^{1 / 3}}{\left(a^{3}\right)^{1 / 3}} \\
&=\frac{(-2) b^{-2}}{a} \\
& \sqrt[3]{\frac{-8 b^{4}}{a^{3} b^{10}}}=\frac{-2}{a b^{2}} \\
& \sqrt[3]{\frac{-8 b^{4}}{a^{3} b^{10}}}=\frac{-2}{a b^{2}}
\end{aligned}
$$

Comments: This was, in general correctly done by many.
(b) $\sqrt{\frac{(-2)^{2}(x+1)^{4}}{(x+2)^{2}}}$

You have to be very careful with this problem. First, the -2 is an obvious danger! Then the not so obvious, yet even more critical, is the way you handle the terms containing the variable variable x.
For example, suppose $x=-1.5$. then you end up with $\sqrt{(-2)^{2}(-0.5)^{4} /(0.5)^{2}}=\sqrt{(4)\left(0.5^{2}\right)}=1$, which is the correct answer. Whereas, if you just "canceled" the exponents with the roots, you would get (the incorrect answer) $(-2)(-0.5)^{2} /(0.5)=-1$ (provided no more mistakes are made).

$$
\begin{aligned}
\sqrt{\frac{(-2)^{2}(x+1)^{4}}{(x+2)^{2}}} & =\sqrt{\frac{4(x+1)^{4}}{(x+2)^{2}}} \\
& =\sqrt{\frac{4(x+1)^{4}}{(x+2)^{2}}} \\
& =\sqrt{\frac{4\left((x+1)^{2}\right)^{2}}{(x+2)^{2}}} \\
& =\frac{2\left|(x+1)^{2}\right|}{|x+2|} \\
\sqrt{\frac{(-2)^{2}(x+1)^{4}}{(x+2)^{2}}} & =\frac{2(x+1)^{2}}{|x+2|} \\
\sqrt{\frac{(-2)^{2}(x+1)^{4}}{(x+2)^{2}}}=\frac{2(x+1)^{2}}{|x+2|} & \text { Since }\left|x^{2}\right|=x^{2}
\end{aligned}
$$

Comments: This was, in general NOT correctly done by many. This was a trick question, intended to test some common mistakes.

