The goal of this note is to give a summary of all the distance formulas in chapter 9.

Prerequisites:

- Given a point P with coordinates (x, y, z) we can associate a vector to the coordinates of the point P as $\boldsymbol{p}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$.
- Given two points P and Q with coordinates $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ respectively we can construct a vector from P to Q (or parallel to the line segment $P Q$, in the direction from P to Q) in the form $\overrightarrow{\boldsymbol{P} \boldsymbol{Q}}=\left(x_{2}-x_{1}\right) \boldsymbol{i}+\left(y_{2}-y_{1}\right) \boldsymbol{j}+\left(z_{2}-z_{1}\right) \boldsymbol{k}$.
- The equation of a line in the symmetric form (a.k.a. standard form) is given by

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Then the corresponding parametric form is $x=x_{0}+a t ; y=y_{0}+b t$ and $z=z_{0}+c t$; where t is a scalar parameter.
The corresponding vector form can be written (after some rearranging) as $\boldsymbol{\ell}=x_{0} \boldsymbol{i}+y_{0} \boldsymbol{j}+z_{0} \boldsymbol{k}+t(a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k})$.
This can be interpreted as a line passing through the point given by the vector $\boldsymbol{a}=x_{0} \boldsymbol{i}+y_{0} \boldsymbol{j}+z_{0} \boldsymbol{k}$, and parallel to the vector $\boldsymbol{v}=a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}$.

- The equation of a plane can be written in the point-normal form as $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$.

If we set $D=-\left(A x_{0}+B y_{0}+C z_{0}\right)$, then we can obtain the standard form of a plane $A x+B y+C z+D=0$.
The point-normal form implies that the plane passes through the point given by the vector $\boldsymbol{a}=x_{0} \boldsymbol{i}+y_{0} \boldsymbol{j}+z_{0} \boldsymbol{k}$ and the normal to the plane is parallel to the vector $\boldsymbol{N}=A \boldsymbol{i}+B \boldsymbol{j}+C \boldsymbol{k}$. i.e. the plane is perpendicular to the vector \boldsymbol{N}.

- For two vectors \boldsymbol{a} and \boldsymbol{b} the dot product is $\boldsymbol{a} \bullet \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \theta$; where θ is the angle between \boldsymbol{a} and \boldsymbol{b}.
- For two vectors \boldsymbol{a} and \boldsymbol{b} the cross product is $\boldsymbol{a} \times \boldsymbol{b}=(\|\boldsymbol{a}\|\|\boldsymbol{b}\| \sin \theta) \boldsymbol{n}$; where θ is the angle from \boldsymbol{a} to \boldsymbol{b}, and \boldsymbol{n} is a unit vector such that $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{n} forms a right-handed system. So, $\|\boldsymbol{a} \times \boldsymbol{b}\|=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \sin \theta$.

Given Data	Diagram	Vector Equation	Other Formulas				
Two points	$P=\underbrace{\left(x_{1}, y_{1}, z_{1}\right)}_{d} \quad Q=\left(x_{2}, y_{2}, z_{2}\right)$	$d=\\|\overrightarrow{\boldsymbol{P Q}}\\|$	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$				
Point and a line		$d=\frac{\\|\overrightarrow{\boldsymbol{A P}} \times \boldsymbol{v}\\|}{\\|\boldsymbol{v}\\|}$	$d=P T=A P \sin \theta$				
Point and a plane		$d=\frac{\|\overrightarrow{\boldsymbol{A P}} \bullet N\|}{\\|N\\|}$	$d=A T=A P \cos \theta=\frac{\left\|A x_{*}+B y_{*}+C z_{*}+D\right\|}{\sqrt{A^{2}+B^{2}+C^{2}}}$				
Two parallel lines		$d=\frac{\left\\|\overrightarrow{\boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{2}}} \times \boldsymbol{v}\right\\|}{\\|\boldsymbol{v}\\|}$	$d=A_{1} T=A_{1} A_{2} \sin \theta$				
Two parallel planes		$d=\frac{\left\|\overrightarrow{\boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{2}}} \bullet N\right\|}{\\|N\\|}$	$d=A_{1} T=A_{1} A_{2} \cos \theta$				
Parallel line and plane		$d=\frac{\left\|\overrightarrow{\boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{2}}} \bullet N\right\|}{\\|N\\|}$	$d=A_{1} T=A_{1} A_{2} \cos \theta$				
Skew lines *		$d=\frac{\left\|\overrightarrow{\boldsymbol{A}_{\mathbf{2}} \boldsymbol{A}_{\mathbf{1}}} \bullet\left(\boldsymbol{v}_{\mathbf{1}} \times \boldsymbol{v}_{\mathbf{2}}\right)\right\|}{\left\\|\boldsymbol{v}_{\mathbf{1}} \times \boldsymbol{v}_{\mathbf{2}}\right\\|}$	$d=A_{2} T=A_{1} A_{2} \cos \theta$				

${ }^{*}$ Given two skew lines along $\boldsymbol{v}_{\boldsymbol{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$, we construct two parallel planes with normal $\boldsymbol{v}_{\mathbf{1}} \times \boldsymbol{v}_{\mathbf{2}}$, and one passing through a point A_{1} on the first line and the other through a point A_{2} on the second line.

In \mathbb{R}^{3}, if a line and a plane are not parallel to one another, then they will surely intersect. So, the distance between a non-parallel line and a plane is always zero!.

How can you check if a line and a plane are parallel to one another?

Suppose the normal of the plane is \boldsymbol{N} and the line is parallel to the vector \boldsymbol{v}. Then the line and the plane are parallel if and only if $\boldsymbol{N} \bullet \boldsymbol{v}=0$.

This means the normal to the plane and the line should be perpendicular to one another. why and how?

