MATH 2350: CALCULUS III Spring 2011, Sections 002 & 004

Supplementary Note # 2 – Distance Formulæ

The goal of this note is to give a summary of all the distance formulas in chapter 9.

Prerequisites:

- Given a point P with coordinates (x, y, z) we can associate a vector to the coordinates of the point P as p = xi + yj + zk.
- Given two points P and Q with coordinates (x_1, y_1, z_1) and (x_2, y_2, z_2) respectively we can construct a vector from P to Q (or parallel to the line segment PQ, in the direction from P to Q) in the form $\overrightarrow{PQ} = (x_2 x_1) \mathbf{i} + (y_2 y_1) \mathbf{j} + (z_2 z_1) \mathbf{k}$.
- The equation of a line in the symmetric form (a.k.a. standard form) is given by

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}.$$

Then the corresponding parametric form is $x = x_0 + at$; $y = y_0 + bt$ and $z = z_0 + ct$; where t is a scalar parameter.

The corresponding vector form can be written (after some rearranging) as $\ell = x_0 i + y_0 j + z_0 k + t (a i + b j + c k)$.

This can be interpreted as a line passing through the point given by the vector $\mathbf{a} = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k}$, and parallel to the vector $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$.

• The equation of a plane can be written in the *point-normal form* as $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$.

If we set $D = -(Ax_0 + By_0 + Cz_0)$, then we can obtain the standard form of a plane Ax + By + Cz + D = 0.

The point-normal form implies that the plane passes through the point given by the vector $\mathbf{a} = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k}$ and the normal to the plane is parallel to the vector $\mathbf{N} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$. i.e. the plane is perpendicular to the vector \mathbf{N} .

- For two vectors \boldsymbol{a} and \boldsymbol{b} the *dot product* is $\boldsymbol{a} \bullet \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$; where θ is the angle between \boldsymbol{a} and \boldsymbol{b} .
- For two vectors \boldsymbol{a} and \boldsymbol{b} the cross product is $\boldsymbol{a} \times \boldsymbol{b} = (\|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin \theta) \boldsymbol{n}$; where θ is the angle from \boldsymbol{a} to \boldsymbol{b} , and \boldsymbol{n} is a unit vector such that $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{n} forms a right-handed system. So, $\|\boldsymbol{a} \times \boldsymbol{b}\| = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin \theta$.

Given Data	Diagram	Vector Equation	Other Formulas
Two points	$P = (x_1, y_1, z_1)$ $Q = (x_2, y_2, z_2)$	$d = \left\ \overrightarrow{PQ} \right\ $	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
Point and a line	$P=(x_{*}, y_{*}, z_{*})$ d θ T $A=(x_{0}, y_{0}, z_{0})$	$d = rac{\left\ \overrightarrow{AP} imes oldsymbol{v} ight\ }{\left\ oldsymbol{v} ight\ }$	$d = PT = AP\sin\theta$
Point and a plane	$ \begin{array}{c} \mathbf{N} \qquad P=(\mathbf{x}_{*}, \mathbf{y}_{*}, \mathbf{z}_{*}) \\ \mathbf{d} \\ \theta \\ \mathbf{A}=(\mathbf{x}_{0}, \mathbf{y}_{0}, \mathbf{z}_{0}) \end{array} $	$d = \frac{\left \overrightarrow{AP} \bullet N \right }{\ N\ }$	$d = AT = AP\cos\theta = \frac{ Ax_* + By_* + Cz_* + D }{\sqrt{A^2 + B^2 + C^2}}$
Two parallel lines	$\begin{array}{c} A_{i}=(x_{i}, y_{i}, z_{i}) \mathbf{a}_{i}+t\mathbf{v} \\ \hline \\ \mathbf{a}_{i}=(x_{i}, y_{i}, z_{i}) \mathbf{a}_{i} + t\mathbf{v} \\ d \\ A_{i}=(x_{i}, y_{i}, z_{i}) \mathbf{a}_{i} + s\mathbf{v} \\ \hline \\ \mathbf{a}_{i}+s\mathbf{v} \\ \hline \\ \mathbf{a}_{i}+s\mathbf{v} \\ \hline \end{array}$	$d = \frac{\left\ \overrightarrow{\boldsymbol{A_1 A_2}} \times \boldsymbol{v} \right\ }{\ \boldsymbol{v}\ }$	$d = A_1 T = A_1 A_2 \sin \theta$
Two parallel planes	$T = \begin{pmatrix} A_1 = (x_1, y_1, z_2) \\ B \\ A_1 = (x_1, y_1, z_1) \end{pmatrix}$	$d = \frac{\left \overrightarrow{A_1A_2} \bullet N\right }{\ N\ }$	$d = A_1 T = A_1 A_2 \cos \theta$
Parallel line and plane	$ \begin{array}{c} \mathbf{N} \\ \mathbf{T} \\ \mathbf{V} \\ \mathbf{d} \\ \theta \\ \mathbf{A}_1 = (\mathbf{X}_1, \mathbf{y}_1, \mathbf{Z}_1) \end{array} $	$d = \frac{\left \overrightarrow{A_1A_2} \bullet N\right }{\ N\ }$	$d = A_1 T = A_1 A_2 \cos \theta$
Skew lines *	$\begin{array}{c} \mathbf{N} = \mathbf{v}_{1} \times \mathbf{v}_{2} \\ \hline \mathbf{v}_{1} \\ \mathbf{v}_{1} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} = (\mathbf{v}_{1} \cdot \mathbf{y}_{1} \cdot \mathbf{z}_{1}) \\ \hline \mathbf{v}_{4} \\ \mathbf{v}_{4} \\ \mathbf{v}_{5} \\ $	$d = \frac{\left \overrightarrow{A_2 A_1} \bullet (v_1 \times v_2) \right }{\ v_1 \times v_2\ }$	$d = A_2 T = A_1 A_2 \cos \theta$

* Given two skew lines along v_1 and v_2 , we construct two parallel planes with normal $v_1 \times v_2$, and one passing through a point A_1 on the first line and the other through a point A_2 on the second line.

In \mathbb{R}^3 , if a line and a plane are not parallel to one another, then they will surely intersect. So, the distance between a non-parallel line and a plane is always zero!.

How can you check if a line and a plane are parallel to one another?

Suppose the normal of the plane is N and the line is parallel to the vector v. Then the line and the plane are parallel if and only if $N \bullet v = 0$.

This means the normal to the plane and the line should be perpendicular to one another. why and how?