MATH 2350: CALCULUS III

Spring 2011, Sections 002 \& 004
Supplementary Note \# 3-Vector Functions In One Parameter

The goal of this note is to give a summary the concepts in chapter 10.1 and 10.2.

- Vector functions of parameter t are of the form $\boldsymbol{F}(t)=f_{1}(t) \boldsymbol{i}+f_{2}(t) \boldsymbol{j}+f_{3}(t) \boldsymbol{k}$.

Each component $f_{1}(t), f_{2}(t)$ and $f_{3}(t)$ is functions of t.

- Examples:
- a line: $\boldsymbol{\ell}(t)=(3+4 t) \boldsymbol{i}+(2 t) \boldsymbol{j}+9 \boldsymbol{k}$
- a helix: $\boldsymbol{h}(t)=(3 \cos t) \boldsymbol{i}+(3 \sin t) \boldsymbol{j}+6 t \boldsymbol{k}$
- a circle $\left(\right.$ on $\left.\mathbb{R}^{2}\right): \boldsymbol{c}(\theta)=(2 \cos \theta) \boldsymbol{i}+(2 \sin \theta) \boldsymbol{j}$
- Addition, subtraction, multiplication by a scalar (constant or by a scalar function of the parameter), dot product, cross product, magnitude, triple products, etc., of vector valued functions are just like for regular vectors.

You can treat a vector valued function of one parameter pretty much like a regular vector for these operations.
Example: Consider the two vector valued functions of parameter t defined by $\boldsymbol{F}(t)=(t+1) \boldsymbol{i}+2 \mathrm{e}^{t} \boldsymbol{j}+(\sin t) \boldsymbol{k}$ and $\boldsymbol{G}(t)=(t-1) \boldsymbol{i}+\left(\frac{1}{t}\right) \boldsymbol{j}+6 \boldsymbol{k}$, and the scalar valued function of t defined by $h(t)=2 t^{2}$.

- Addition: Add componentwise

$$
(\boldsymbol{F}+\boldsymbol{G})(t)=\boldsymbol{F}(t)+\boldsymbol{G}(t)=(t+1+t-1) \boldsymbol{i}+\left(2 \mathrm{e}^{t}+\frac{1}{t}\right) \boldsymbol{j}+(\sin t+6) \boldsymbol{k}=2 t \boldsymbol{i}+\left(2 \mathrm{e}^{t}+\frac{1}{t}\right) \boldsymbol{j}+(6+\sin t) \boldsymbol{k}
$$

- Subtraction: Subtract componentwise

$$
(\boldsymbol{F}-\boldsymbol{G})(t)=\boldsymbol{F}(t)-\boldsymbol{G}(t)=[t+1-(t-1)] \boldsymbol{i}+\left(2 \mathrm{e}^{t}-\frac{1}{t}\right) \boldsymbol{j}+(\sin t-6) \boldsymbol{k}=2 \boldsymbol{i}+\left(2 \mathrm{e}^{t}-\frac{1}{t}\right) \boldsymbol{j}+(\sin t-6) \boldsymbol{k}
$$

- Multiplication by a scalar: Multiply each component by the scalar/scalar function

$$
(h \boldsymbol{F})(t)=h(t) \boldsymbol{F}(t)=\left(2 t^{2}\right)(t+1) \boldsymbol{i}+\left(2 t^{2}\right)\left(2 \mathrm{e}^{t}\right) \boldsymbol{j}+\left(2 t^{2}\right)(\sin t) \boldsymbol{k}=\left(2 t^{3}+2 t^{2}\right) \boldsymbol{i}+\left(4 t^{2} \mathrm{e}^{t}\right) \boldsymbol{j}+\left(2 t^{2} \sin t\right) \boldsymbol{k}
$$

- Cross Product: This results in a vector function of the parameter

$$
\begin{aligned}
(\boldsymbol{F} \times \boldsymbol{G})(t)=\boldsymbol{F}(t) \times \boldsymbol{G}(t) & =\left((t+1) \boldsymbol{i}+2 \mathrm{e}^{t} \boldsymbol{j}+(\sin t) \boldsymbol{k}\right) \times\left((t-1) \boldsymbol{i}+\left(\frac{1}{t}\right) \boldsymbol{j}+6 \boldsymbol{k}\right) \\
& =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
(t+1) & 2 \mathrm{e}^{t} & (\sin t) \\
(t-1) & \left(\frac{1}{t}\right) & 6
\end{array}\right| \\
& =\left(12 \mathrm{e}^{t}-\left(\frac{1}{t}\right) \sin t\right) \boldsymbol{i}-(6(t+1)-(t-1) \sin t) \boldsymbol{j}+\left(\left(\frac{1}{t}\right)(t+1)-2(t-1) \mathrm{e}^{t}\right) \boldsymbol{k}
\end{aligned}
$$

- Dot Product: This results in a scalar function of the parameter

$$
(\boldsymbol{F} \bullet \boldsymbol{G})(t)=\boldsymbol{F}(t) \bullet \boldsymbol{G}(t)=(t+1)(t-1)+\left(2 \mathrm{e}^{t}\right)\left(\frac{1}{t}\right)+(\sin t)(6)=t^{2}+6 \sin t+2 \mathrm{e}^{t} / t
$$

- Magnitude: This is also a scalar function of the parameter

$$
\|\boldsymbol{F}(t)\|=\sqrt{(t+1)^{2}+4 \mathrm{e}^{2 t}+\sin ^{2} t}
$$

- Limits, continuity, differentiability, differentiation, integration works similar to scalar valued, but now they should work for each component:

Examples:

- Limits: Find limits of each component.

Given $\boldsymbol{F}(t)=(t+1) \boldsymbol{i}+\left(\frac{\sin t}{t}\right) \boldsymbol{j}+\left(\mathrm{e}^{t}\right) \boldsymbol{k}$, find $\lim _{t \rightarrow 0} \boldsymbol{F}(t)$:

$$
\begin{aligned}
\lim _{t \rightarrow 0} \boldsymbol{F}(t) & =\left(\lim _{t \rightarrow 0} f_{1}(t)\right) \boldsymbol{i}+\left(\lim _{t \rightarrow 0} f_{2}(t)\right) \boldsymbol{j}+\left(\lim _{t \rightarrow 0} f_{3}(t)\right) \boldsymbol{k} \\
& =\left(\lim _{t \rightarrow 0} t+1\right) \boldsymbol{i}+\left(\lim _{t \rightarrow 0} \frac{\sin t}{t}\right) \boldsymbol{j}+\left(\lim _{t \rightarrow 0} \mathrm{e}^{t}\right) \boldsymbol{k} \\
& =(1) \boldsymbol{i}+(1) \boldsymbol{j}+(1) \boldsymbol{k}
\end{aligned}
$$

- Continuity: See if each component is continuous

Investigate the continuity of $\boldsymbol{F}(t)=(t+1) \boldsymbol{i}+\left(\frac{1}{t}\right) \boldsymbol{j}+(\tan t) \boldsymbol{k}$
The \boldsymbol{i} component is continuous at any real number
The \boldsymbol{j} component is continuous at any real number except at $t=0$
The \boldsymbol{k} component is continuous at any real number except when t is an odd multiple of $\pi / 2$
Therefore, the vector valued function \boldsymbol{F} is continuous at every real number except 0 or an odd multiple of $\pi / 2$

- Differentiability: See if/when each component is differentiable
- Differentiation: Differentiate componentwise

Differentiate $\boldsymbol{F}(t)=\left(t^{4}+\mathrm{e}^{-t}\right) \boldsymbol{i}+\left(\cos t^{2}\right) \boldsymbol{j}+(\tan t) \boldsymbol{k}$, w.r.t. t

$$
\begin{aligned}
\boldsymbol{F}^{\prime}(t) & =f_{1}^{\prime}(t) \boldsymbol{i}+f_{2}^{\prime}(t) \boldsymbol{j}+f_{3}^{\prime}(t) \boldsymbol{k} \\
& =\left(4 t^{3}-\mathrm{e}^{-t}\right) \boldsymbol{i}+\left(-2 t \sin t^{2}\right) \boldsymbol{j}+\left(\sec ^{2} t\right) \boldsymbol{k}
\end{aligned}
$$

- Integration: Intrgrate componentwise

Find the indefinite integral of $\boldsymbol{F}(t)=\left(t^{4}+\mathrm{e}^{-t}\right) \boldsymbol{i}+(\cos t) \boldsymbol{j}+\left(\frac{1}{t}\right) \boldsymbol{k}$, w.r.t. t

$$
\begin{aligned}
\int \boldsymbol{F}(t) \mathrm{d} t & =\left(\int f_{1}(t) \mathrm{d} t\right) \boldsymbol{i}+\left(\int f_{2}(t) \mathrm{d} t\right) \boldsymbol{j}+\left(\int f_{3}(t) \mathrm{d} t\right) \boldsymbol{k} \\
& =\left(\int t^{4}+\mathrm{e}^{-t} \mathrm{~d} t\right) \boldsymbol{i}+\left(\int \cos t \mathrm{~d} t\right) \boldsymbol{j}+\left(\int \frac{1}{t} \mathrm{~d} t\right) \boldsymbol{k} \\
& =\left(\frac{t^{5}}{5}-\mathrm{e}^{-t}+c_{1}\right) \boldsymbol{i}+\left(\sin t+c_{2}\right) \boldsymbol{j}+\left(\ln |t|+c_{3}\right) \boldsymbol{k}
\end{aligned}
$$

Find the definite integral of $\boldsymbol{F}(t)=t \boldsymbol{i}+(\sin \pi t) \boldsymbol{j}+\left(\mathrm{e}^{t}\right) \boldsymbol{k}$, from $t=1$ to $t=2$.

$$
\begin{aligned}
\int_{1}^{2} \boldsymbol{F}(t) \mathrm{d} t & =\left(\int_{1}^{2} f_{1}(t) \mathrm{d} t\right) \boldsymbol{i}+\left(\int_{1}^{2} f_{2}(t) \mathrm{d} t\right) \boldsymbol{j}+\left(\int_{1}^{2} f_{3}(t) \mathrm{d} t\right) \boldsymbol{k} \\
& =\left(\int_{1}^{2} t \mathrm{~d} t\right) \boldsymbol{i}+\left(\int_{1}^{2} \sin \pi t \mathrm{~d} t\right) \boldsymbol{j}+\left(\int_{1}^{2} \mathrm{e}^{t} \mathrm{~d} t\right) \boldsymbol{k} \\
& =\left[\frac{t^{2}}{2}\right]_{1}^{2} \boldsymbol{i}+\left[\frac{\cos \pi t}{\pi}\right]_{1}^{2} \boldsymbol{j}+\left[\mathrm{e}^{t}\right]_{1}^{2} \boldsymbol{k} \\
& =\left(\frac{2^{2}-1^{2}}{2}\right) \boldsymbol{i}+\left(\frac{\cos 2 \pi-\cos \pi}{\pi}\right) \boldsymbol{j}+\left(\mathrm{e}^{2}-\mathrm{e}^{1}\right) \boldsymbol{k}=\left(\frac{3}{2}\right) \boldsymbol{i}+\left(\frac{2}{\pi}\right) \boldsymbol{j}+\left(\mathrm{e}^{2}-\mathrm{e}^{1}\right) \boldsymbol{k}
\end{aligned}
$$

- Properties: Let $\boldsymbol{F}(t)$ and $\boldsymbol{G}(t)$ be vector valued functions and $h(t)$ be a scalar valued function of t. Also let a and b be scalar constants.
- Rules of Limits

$$
\begin{aligned}
& \diamond \lim _{t \rightarrow t_{0}}(\boldsymbol{F}(t)+\boldsymbol{G}(t))=\lim _{t \rightarrow t_{0}} \boldsymbol{F}(t)+\lim _{t \rightarrow t_{0}} \boldsymbol{G}(t) \\
& \diamond \lim _{t \rightarrow t_{0}}(\boldsymbol{F}(t)-\boldsymbol{G}(t))=\lim _{t \rightarrow t_{0}} \boldsymbol{F}(t)-\lim _{t \rightarrow t_{0}} \boldsymbol{G}(t) \\
& \diamond \lim _{t \rightarrow t_{0}}(h(t) \boldsymbol{F}(t))=\left(\lim _{t \rightarrow t_{0}} h(t)\right)\left(\lim _{t \rightarrow t_{0}} \boldsymbol{F}(t)\right) \\
& \diamond \lim _{t \rightarrow t_{0}}(\boldsymbol{F}(t) \bullet \boldsymbol{G}(t))=\left(\lim _{t \rightarrow t_{0}} \boldsymbol{F}(t)\right) \bullet\left(\lim _{t \rightarrow t_{0}} \boldsymbol{G}(t)\right) \\
& \diamond \lim _{t \rightarrow t_{0}}(\boldsymbol{F}(t) \times \boldsymbol{G}(t))=\left(\lim _{t \rightarrow t_{0}} \boldsymbol{F}(t)\right) \times\left(\lim _{t \rightarrow t_{0}} \boldsymbol{G}(t)\right)
\end{aligned}
$$

- Rules of Differentiation

$\diamond(a \boldsymbol{F}+b \boldsymbol{G})^{\prime}(t)=a \boldsymbol{F}^{\prime}(t)+b \boldsymbol{G}^{\prime}(t)$
$\diamond(h \boldsymbol{F})^{\prime}(t)=h^{\prime}(t) \boldsymbol{F}(t)+h(t) \boldsymbol{F}^{\prime}(t)$
$\diamond(\boldsymbol{F} \bullet \boldsymbol{G})^{\prime}(t)=\left(\boldsymbol{F}^{\prime} \bullet \boldsymbol{G}\right)(t)+\left(\boldsymbol{F} \bullet \boldsymbol{G}^{\prime}\right)(t)$
$\diamond(\boldsymbol{F} \times \boldsymbol{G})^{\prime}(t)=\left(\boldsymbol{F}^{\prime} \times \boldsymbol{G}\right)(t)+\left(\boldsymbol{F} \times \boldsymbol{G}^{\prime}\right)(t)$
$\diamond(\boldsymbol{F}(h(t)))^{\prime}=h^{\prime}(t) \boldsymbol{F}^{\prime}(h(t))$
(Chain Rule)

- Smooth Vector Valued Function: The vector valued function \boldsymbol{F} is continuous and $\boldsymbol{F}^{\prime}(t) \neq 0$.

Piecewise smooth if there is a finite number of subintervals on which \boldsymbol{F} is smooth.

- In general $\boldsymbol{F}^{\prime}(t)$ gives the tangent to the vector valued function \boldsymbol{F}.
- If the vector valued function $\boldsymbol{R}(t)$ describes the variation of the position of a "particle" with time t then
- $\boldsymbol{R}^{\prime}(t)$ is the velocity of the particle at time t
- $\boldsymbol{R}^{\prime}(t) /\left\|\boldsymbol{R}^{\prime}(t)\right\|$ is the direction of motion of the particle at time t
- $\boldsymbol{R}^{\prime \prime}(t)$ is the acceleration of the particle at time t
- If $\|\boldsymbol{F}(t)\|$ is constant, then $\boldsymbol{F}^{\prime}(t)$ is orthogonal to \boldsymbol{F}. we can prove this easily.

Suppose $\|\boldsymbol{F}(t)\|=k$, constant.
Then, $\|\boldsymbol{F}(t)\|^{2}=k^{2}$.
We had a property of the magnitude that $\|\boldsymbol{F}(t)\|^{2}=\boldsymbol{F}(t) \bullet \boldsymbol{F}(t)$.
Hence, $\boldsymbol{F}(t) \bullet \boldsymbol{F}(t)=k^{2}$, still it is constant.
So, differentiating the dot product $\boldsymbol{F}^{\prime}(t) \bullet \boldsymbol{F}(t)+\boldsymbol{F}(t) \bullet \boldsymbol{F}^{\prime}(t)=0$.
Then we see that $\boldsymbol{F}(t) \bullet \boldsymbol{F}^{\prime}(t)=0$. i.e. they are orthogonal.

