MATH 2350: CALCULUS III
Spring 2011, Sections 002 & 004
Supplementary Note # 6 — Theory of Curves

A summary of §10.4 and a little bit more

Arc length of a curve between two points on a curve

b
e For a scalar function; y = f(x) in R2: s= / V14 [f (@) dz

e For a parametric function; x = f1(t);y = fa(t) in R?: 5= /t2 \/[f{(t)]2 + [f4)]7 dt
e For a parametric function; x = f1(t); y = fa(t); z = f3(t) in R3: 5= /t2 \/[f{(t)]2 + [f5O) + [f4(0) dt

Arc length function of a curve starting at ¢ =t

o For a vector valued fun.; R(t) = r1(t)i + ro(t)j in R?: s(t) = /t \/[r’l O + (D) dr = | |R/(7)|| dr

to

e For a vec. val. fun.; R(t) =ri(t)i+ra(t)j +rs()k in R3:  s(t) = /t \/[r’l(T)]2+[T’Q(T)]2+[rg(7)]2 dt = [ |R'(7)| dr

If the vector function R(t) defines the motion of a particle, then the arc length function s(7") defines the distance traveled by the
d
particle from the starting time ¢ = tg, up until time ¢ = T'. So, £ gives the rate of change of distance, the speed, | R’(7)||.

We can parameterize a curve using the arc length. Then the equation will tell us how the vector valued function changes “after

traveling a particular distance on the curve”; instead of telling us how the vector valued function changes at a particular “time”.

Ezample 1: Parameterize the helix R(t) = 3sinté + 3costj + 4tk; t > 0 using the arc length.

Arc length function s(t) = fot V/(Bcost)2 + (=3sint)2 + (4)2 dt = fg \/9(0052 t+sin?t) + 16 dt = fot V9 +16 dt = 5t

So, t = $/5. Hence, R(t) = R(s) = 3sin(s/5)t + 3cos(s/5)j + (4s/5)k; s>0

Let R(t) = r1(t)i + ra(t)§ + r3(t)k be the vector equation of a curve in R3. If R(¢) is a smooth curve (i.e. differentiable in ¢ and
R/(t) # 0) then we can define the following.

R(t)
1. Unit Tangent =T (t) = —+——
IR ()]
o . T'(t)
2. (Principal) Unit Normal= N (t) = ———
(eIl
. T(t) x N(t)
3. Unit Bi-normal= B(t) = ————F————
O = ) < N




Obviously, T'(t) is tangential to the curve described by R(t). Note that T'(t), N (t) and B(¢) are orthogonal to one another.
N (t) is tangential to T'(t)/||T(t)||. Since T'(¢)/||T(t)|] has a constant magnitude of 1, N (¢) is also orthogonal to T'(¢).

Clearly B(t) is orthogonal to T'(t) and IN(¢) since it is defined using the cross product between them.

If we use the arc length parameterization, we can make some nice (and useful) observations.

dR
1. T=—
ds
dT IR x R
2. Curvature = Kk = Hds = W
1dT
3. N=-2&
K ds

Ezxample 1 (cont’d ...): Compute the Tangent, Normal and Curvatures for the helix given before.

Using the time parameterization Using the arc length parameterization
R(t) = 3sinti+ 3costj + 4tk s = bt
R'(t) = 3costi—3sintj + 4k R(s) = 3sin(s/5)i+ 3cos(s/5)j + (4s/5)k
/ _ N dR 3 3 4
IRl = 5 * T(s) = () = —cos(s/b)i — —sin(s/5)j + -k
. T R (1) 3 osti— Samti + Lk ds 5 5 5
= —— = —costi— —sintj+ - BY: 4
IR ()]l 5 5 5 * Tt) = R(s) = §cos ti — §sintj + -k
3 3 ds 5 5 5
Tt = ~5 sinti — 5 o8 tj + Ok _ s=5t
dT 3 . .3 .
3 2 3 2 3 P () = —3 sin(s/5)i — % cos(s/b)g + Ok
T ()| = ——sint| + |—=cost| +02 = -
5 ) 5 = 2 2
R(s) dT'(s) { 5 sin t] + { 3 cos t] +0?
T'(t = % %
* N(t) = # = —costt —sinty + 0k ds 25 25
Gl dol 3
R"(t) = —3sinti—3costj + 0k R = —
(t) sinti — 3costy + * R(s) P 55
R'(t) x R'(t) = 12costi —12sintj — 9k _
, " . () = dT(s) 3
|R'(t) x R'(t)] = 15 = |G T
IR () x R"()] 15 o
k() = —%Hrm o = 5 - 1 dT(s) . . ;
R () 5 x  N(s) = = = —sin(s/5)i — cos(s/5)j + Ok
3 R(s) ds
* k(i) = — -
1 dT
2% £ OND = ao () - sin(t)i — cos(t)j + Ok

So, T'(t) = %costif %sintj + %kz; N(t) = —costi —sintj + 0k; k = %

I prefer to use a tilde ~ to denote arc length parameterized quantities; that is just a convention of my own and it is NOT a standard practice.

The mathematical meaning of curvature, k, is similar to its English meaning: it measures how much a curve “curves”!

As you would guess, the curvature of a straight line is 0; and for a circle with radius r, the curvature is 1/r. (verify)




