MATH 2350: CALCULUS III

Spring 2011, Sections 002 \& 004
Supplementary Note \# 6 - Theory of Curves

A summary of $\S 10.4$ and a little bit more

Arc length of a curve between two points on a curve

- For a scalar function; $y=f(x)$ in $\mathbb{R}^{2}: \quad s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} \mathrm{~d} x$
- For a parametric function; $x=f_{1}(t) ; y=f_{2}(t)$ in $\mathbb{R}^{2}: \quad s=\int_{t_{1}}^{t_{2}} \sqrt{\left[f_{1}^{\prime}(t)\right]^{2}+\left[f_{2}^{\prime}(t)\right]^{2}} \mathrm{~d} t$
- For a parametric function; $x=f_{1}(t) ; y=f_{2}(t) ; z=f_{3}(t)$ in $\mathbb{R}^{3}: \quad s=\int_{t_{1}}^{t_{2}} \sqrt{\left[f_{1}^{\prime}(t)\right]^{2}+\left[f_{2}^{\prime}(t)\right]^{2}+\left[f_{3}^{\prime}(t)\right]^{2}} \mathrm{~d} t$

Arc length function of a curve starting at $t=t_{0}$

- For a vector valued fun.; $\boldsymbol{R}(t)=r_{1}(t) \boldsymbol{i}+r_{2}(t) \boldsymbol{j}$ in $\mathbb{R}^{2}: \quad s(t)=\int_{t_{0}}^{t} \sqrt{\left[r_{1}^{\prime}(\tau)\right]^{2}+\left[r_{2}^{\prime}(\tau)\right]^{2}} \mathrm{~d} \tau=\int_{t_{0}}^{t}\left\|\boldsymbol{R}^{\prime}(\tau)\right\| \mathrm{d} \tau$
- For a vec. val. fun.; $\boldsymbol{R}(t)=r_{1}(t) \boldsymbol{i}+r_{2}(t) \boldsymbol{j}+r_{3}(t) \boldsymbol{k}$ in $\mathbb{R}^{3}: \quad s(t)=\int_{t_{0}}^{t} \sqrt{\left[r_{1}^{\prime}(\tau)\right]^{2}+\left[r_{2}^{\prime}(\tau)\right]^{2}+\left[r_{3}^{\prime}(\tau)\right]^{2}} \mathrm{~d} t=\int_{t_{0}}^{t}\left\|\boldsymbol{R}^{\prime}(\tau)\right\| \mathrm{d} \tau$

If the vector function $\boldsymbol{R}(t)$ defines the motion of a particle, then the arc length function $s(T)$ defines the distance traveled by the particle from the starting time $t=t_{0}$, up until time $t=T$. So, $\frac{\mathrm{d} s}{\mathrm{~d} t}$ gives the rate of change of distance, the speed, $\left\|\boldsymbol{R}^{\prime}(\tau)\right\|$.

We can parameterize a curve using the arc length. Then the equation will tell us how the vector valued function changes "after traveling a particular distance on the curve"; instead of telling us how the vector valued function changes at a particular "time".

Example 1: Parameterize the helix $\boldsymbol{R}(t)=3 \sin t \boldsymbol{i}+3 \cos t \boldsymbol{j}+4 t \boldsymbol{k} ; \quad t \geq 0$ using the arc length.
Arc length function $s(t)=\int_{0}^{t} \sqrt{(3 \cos t)^{2}+(-3 \sin t)^{2}+(4)^{2}} \mathrm{~d} t=\int_{0}^{t} \sqrt{9\left(\cos ^{2} t+\sin ^{2} t\right)+16} \mathrm{~d} t=\int_{0}^{t} \sqrt{9+16} \mathrm{~d} t=5 t$
So, $t=s / 5$. Hence, $\boldsymbol{R}(t)=\tilde{\boldsymbol{R}}(s)=3 \sin (s / 5) \boldsymbol{i}+3 \cos (s / 5) \boldsymbol{j}+(4 s / 5) \boldsymbol{k} ; \quad s \geq 0$

Let $\boldsymbol{R}(t)=r_{1}(t) \boldsymbol{i}+r_{2}(t) \boldsymbol{j}+r_{3}(t) \boldsymbol{k}$ be the vector equation of a curve in \mathbb{R}^{3}. If $\boldsymbol{R}(t)$ is a smooth curve (i.e. differentiable in t and $\left.\boldsymbol{R}^{\prime}(t) \neq 0\right)$ then we can define the following.

1. Unit Tangent $=\boldsymbol{T}(t)=\frac{\boldsymbol{R}^{\prime}(t)}{\left\|\boldsymbol{R}^{\prime}(t)\right\|}$
2. (Principal) Unit Normal $=\boldsymbol{N}(t)=\frac{\boldsymbol{T}^{\prime}(t)}{\left\|\boldsymbol{T}^{\prime}(t)\right\|}$
3. Unit Bi-normal $=\boldsymbol{B}(t)=\frac{\boldsymbol{T}(t) \times \boldsymbol{N}(t)}{\|\boldsymbol{T}(t) \times \boldsymbol{N}(t)\|}$

Obviously, $\boldsymbol{T}(t)$ is tangential to the curve described by $\boldsymbol{R}(t)$. Note that $\boldsymbol{T}(t), \boldsymbol{N}(t)$ and $\boldsymbol{B}(t)$ are orthogonal to one another. $\boldsymbol{N}(t)$ is tangential to $\boldsymbol{T}(t) /\|\boldsymbol{T}(t)\|$. Since $\boldsymbol{T}(t) /\|\boldsymbol{T}(t)\|$ has a constant magnitude of $1, \boldsymbol{N}(t)$ is also orthogonal to $\boldsymbol{T}(t)$. Clearly $\boldsymbol{B}(t)$ is orthogonal to $\boldsymbol{T}(t)$ and $\boldsymbol{N}(t)$ since it is defined using the cross product between them.

If we use the arc length parameterization, we can make some nice (and useful) observations.

1. $\boldsymbol{T}=\frac{\mathrm{d} \boldsymbol{R}}{\mathrm{d} s}$
2. Curvature $=\kappa=\left\|\frac{\mathrm{d} \boldsymbol{T}}{\mathrm{d} s}\right\|=\frac{\left\|\boldsymbol{R}^{\prime} \times \boldsymbol{R}^{\prime \prime}\right\|}{\left\|\boldsymbol{R}^{\prime}\right\|^{3}}$
3. $\boldsymbol{N}=\frac{1}{\kappa} \frac{\mathrm{~d} \boldsymbol{T}}{\mathrm{~d} s}$

Example 1 (cont'd...): Compute the Tangent, Normal and Curvatures for the helix given before.

Using the time parameterization

$$
\begin{aligned}
\boldsymbol{R}(t) & =3 \sin t \boldsymbol{i}+3 \cos t \boldsymbol{j}+4 t \boldsymbol{k} \\
\boldsymbol{R}^{\prime}(t) & =3 \cos t \boldsymbol{i}-3 \sin t \boldsymbol{j}+4 \boldsymbol{k} \\
\left\|\boldsymbol{R}^{\prime}(t)\right\| & =5 \\
\star \quad \boldsymbol{T}(t) & =\frac{\boldsymbol{R}^{\prime}(t)}{\left\|\boldsymbol{R}^{\prime}(t)\right\|}=\frac{3}{5} \cos t \boldsymbol{i}-\frac{3}{5} \sin t \boldsymbol{j}+\frac{4}{5} \boldsymbol{k} \\
\boldsymbol{T}^{\prime}(t) & =-\frac{3}{5} \sin t \boldsymbol{i}-\frac{3}{5} \cos t \boldsymbol{j}+0 \boldsymbol{k} \\
\left\|\boldsymbol{T}^{\prime}(t)\right\| & =\sqrt{\left[-\frac{3}{5} \sin t\right]^{2}+\left[-\frac{3}{5} \cos t\right]^{2}+0^{2}}=\frac{3}{5} \\
\star \quad \boldsymbol{N}(t) & =\frac{\boldsymbol{T}^{\prime}(t)}{\left\|\boldsymbol{T}^{\prime}(t)\right\|}=-\cos t \boldsymbol{i}-\sin t \boldsymbol{j}+0 \boldsymbol{k} \\
\boldsymbol{R}^{\prime \prime}(t) & =-3 \sin t \boldsymbol{i}-3 \cos t \boldsymbol{j}+0 \boldsymbol{k} \\
\boldsymbol{R}^{\prime}(t) & \times \boldsymbol{R}^{\prime \prime}(t)=12 \cos t \boldsymbol{i}-12 \sin t \boldsymbol{j}-9 \boldsymbol{k} \\
\| \boldsymbol{R}^{\prime}(t) & \times \boldsymbol{R}^{\prime \prime}(t) \|=15 \\
\kappa(t) & =\frac{\left\|\boldsymbol{R}^{\prime}(t) \times \boldsymbol{R}^{\prime \prime}(t)\right\|}{\left\|\boldsymbol{R}^{\prime}(t)\right\|^{3}}=\frac{15}{5^{3}} \\
\star \quad \kappa(t) & =\frac{3}{25}
\end{aligned}
$$

Using the arc length parameterization

$$
\begin{aligned}
& s=5 t \\
& \tilde{\boldsymbol{R}}(s)=3 \sin (s / 5) \boldsymbol{i}+3 \cos (s / 5) \boldsymbol{j}+(4 s / 5) \boldsymbol{k} \\
& \text { * } \quad \tilde{\boldsymbol{T}}(s)=\frac{\mathrm{d} \tilde{\boldsymbol{R}}(s)}{\mathrm{d} s}=\frac{3}{5} \cos (s / 5) \boldsymbol{i}-\frac{3}{5} \sin (s / 5) \boldsymbol{j}+\frac{4}{5} \boldsymbol{k} \\
& \star \quad \boldsymbol{T}(t)=\left.\frac{\mathrm{d} \tilde{\boldsymbol{R}}(s)}{\mathrm{d} s}\right|_{s=5 t}=\frac{3}{5} \cos t \boldsymbol{i}-\frac{3}{5} \sin t \boldsymbol{j}+\frac{4}{5} \boldsymbol{k} \\
& \frac{\mathrm{~d} \tilde{\boldsymbol{T}}(s)}{\mathrm{d} s}=-\frac{3}{25} \sin (s / 5) \boldsymbol{i}-\frac{3}{25} \cos (s / 5) \boldsymbol{j}+0 \boldsymbol{k} \\
& \tilde{\kappa}(s)=\left\|\frac{\mathrm{d} \tilde{\boldsymbol{T}}(s)}{\mathrm{d} s}\right\|=\sqrt{\left[-\frac{3}{25} \sin t\right]^{2}+\left[-\frac{3}{25} \cos t\right]^{2}+0^{2}} \\
& \text { * } \tilde{\kappa}(s)=\left\|\frac{\mathrm{d} \tilde{\boldsymbol{T}}(s)}{\mathrm{d} s}\right\|=\frac{3}{25} \\
& \star \quad \kappa(t)=\left\|\frac{\mathrm{d} \tilde{\boldsymbol{T}}(s)}{\mathrm{d} s}\right\| \|_{s=5 t}=\frac{3}{25} \\
& \text { * } \tilde{\boldsymbol{N}}(s)=\frac{1}{\tilde{\kappa}(s)} \frac{\mathrm{d} \tilde{\boldsymbol{T}}(s)}{\mathrm{d} s}=-\sin (s / 5) \boldsymbol{i}-\cos (s / 5) \boldsymbol{j}+0 \boldsymbol{k} \\
& \star \quad \boldsymbol{N}(t)=\left.\frac{1}{\tilde{\kappa}(s)} \frac{\mathrm{d} \tilde{\boldsymbol{T}}(s)}{\mathrm{d} s}\right|_{s=5 t}=-\sin (t) \boldsymbol{i}-\cos (t) \boldsymbol{j}+0 \boldsymbol{k}
\end{aligned}
$$

So, $\boldsymbol{T}(t)=\frac{3}{5} \cos t \boldsymbol{i}-\frac{3}{5} \sin t \boldsymbol{j}+\frac{4}{5} \boldsymbol{k} ; \boldsymbol{N}(t)=-\cos t \boldsymbol{i}-\sin t \boldsymbol{j}+0 \boldsymbol{k} ; \kappa=\frac{3}{25}$

I prefer to use a tilde $\tilde{\text {. to denote arc length parameterized quantities; that is just a convention of my own and it is NOT a standard practice. }}$

The mathematical meaning of curvature, κ, is similar to its English meaning: it measures how much a curve "curves"! As you would guess, the curvature of a straight line is 0 ; and for a circle with radius r, the curvature is $1 / r$. (verify)

