MATH 2350: CALCULUS III

Spring 2011, Sections 002 \& 004
More Hints for Mid Term Test \# 1 - Take Home Portion - Problem 2

Example:

Consider the dynamics of a particle on \mathbb{R}^{2} using the time parameter t, is defined using the polar coordinates (r, θ) with $r=\frac{1}{(t+1)}$ and $\theta=\ln (t+1) ; t \geq 0$.

1. Write the polar equation (in the form $r=f(\theta)$) which describes trace of the path of the particle. Note that from the parameterization of θ we get $t+1=\mathrm{e}^{\theta}$. So, $r=\frac{1}{\mathrm{e}^{\theta}}$. Which is simply $r=\mathrm{e}^{-\theta}$
2. Find the parametric equation of this curve in rectangular Cartesian coordinates.

Using θ, it is simply $x=\mathrm{e}^{-\theta} \cos \theta$ and $y=\mathrm{e}^{-\theta} \sin \theta$.
If we use t, it is simply $x=\frac{1}{(t+1)} \cos (\ln (t+1))$ and $y=\frac{1}{(t+1)} \sin (\ln (t+1))$.

3. Find the tangent to this curve.

We can either set $\boldsymbol{R}(t)=\frac{1}{(t+1)} \cos (\ln (t+1)) \boldsymbol{i}+\frac{1}{(t+1)} \sin (\ln (t+1)) \boldsymbol{j}$ and directl differentiate w.r.t. t. Or else, we can use the θ parameterization and use the chain rule as follows:

$$
\begin{aligned}
\boldsymbol{R}(\theta(t)) & =\mathrm{e}^{-\theta} \cos \theta \boldsymbol{i}+\mathrm{e}^{-\theta} \sin \theta \boldsymbol{j} \\
\boldsymbol{R}^{\prime}(\theta(t)) & =\frac{\mathrm{d} \theta}{\mathrm{~d} t} \frac{\mathrm{~d} \boldsymbol{R}}{\mathrm{~d} \theta} \\
\boldsymbol{R}^{\prime}(\theta(t)) & =\left(\frac{1}{t+1}\right)\left[\left(-\mathrm{e}^{-\theta} \cos \theta-\mathrm{e}^{-\theta} \sin \theta\right) \boldsymbol{i}+\left(-\mathrm{e}^{-\theta} \sin \theta+\mathrm{e}^{-\theta} \cos \theta\right) \boldsymbol{j}\right] \\
\boldsymbol{R}^{\prime}(\theta(t)) & =\left(\frac{1}{t+1}\right) \mathrm{e}^{-\theta}[-(\cos \theta+\sin \theta) \boldsymbol{i}+(-\sin \theta+\cos \theta) \boldsymbol{j}] \\
\boldsymbol{R}^{\prime}(\theta(t)) & =\left(\frac{1}{t+1}\right)^{2}[-(\cos (\ln (t+1))+\sin (\ln (t+1))) \boldsymbol{i}+(-\sin (\ln (t+1))+\cos (\ln (t+1))) \boldsymbol{j}]
\end{aligned}
$$

If you read my notes or page 655 on the book, you will see that you need to compute $r^{\prime}(t), r^{\prime \prime}(t), \theta^{\prime}(t)$ and $\theta^{\prime \prime}(t)$ for the next two sections.
So, let's calculate them beforehand: $r^{\prime}(t)=\frac{-1}{(t+1)^{2}}, r^{\prime \prime}(t)=\frac{2}{(t+1)^{3}}, \theta^{\prime}(t)=\frac{1}{(t+1)}$ and $\theta^{\prime \prime}(t)=\frac{-1}{(t+1)^{2}}$.
4. Find the velocity components of this particle along \boldsymbol{u}_{r} and \boldsymbol{u}_{θ} directions

From my notes or from the book you can see that:
Velocity component along \boldsymbol{u}_{r} is $r^{\prime}(t)=\frac{-1}{(t+1)^{2}}$
Velocity component along \boldsymbol{u}_{θ} is $r(t) \theta^{\prime}(t)=\left(\frac{1}{(t+1)}\right)\left(\frac{1}{(t+1)}\right)=\frac{1}{(t+1)^{2}}$
5. Find the acceleration components of this particle along u_{r} and u_{θ} directions

Again from my notes or from the book you can see that:
Acceleration component along \boldsymbol{u}_{r} is $r^{\prime \prime}(t)-r\left(\theta^{\prime}(t)\right)^{2}=\frac{-1}{(t+1)^{3}}-\left(\frac{1}{(t+1)}\right)\left(\frac{1}{(t+1)}\right)^{2}=\frac{-2}{(t+1)^{3}}$
Acceleration component along \boldsymbol{u}_{θ} is $r(t) \theta^{\prime \prime}(t)+2 r^{\prime} \theta^{\prime}(t)=\frac{1}{(t+1)} \frac{-1}{(t+1)^{2}}-2 \frac{-1}{(t+1)^{2}} \frac{1}{(t+1)}=\frac{-3}{(t+1)^{3}}$
6. At a given time t, calculate how far away the particle is from the origin.

Clearly The distance from the origin is $\|\boldsymbol{R}(t)-(0 \boldsymbol{i}+0 \boldsymbol{j})\|=\|\boldsymbol{R}(t)\|=r(t)=\frac{1}{(t+1)}$
7. Find what happens to the acceleration, velocity and distance from the origin as $t \rightarrow \infty$.

It is very easy to see that the distance from the origin goes to zero as $t \rightarrow \infty$.
Note that the components of velocity and acceleration along \boldsymbol{u}_{r} as well as along \boldsymbol{u}_{θ} goes to zero as $t \rightarrow \infty$.
So, both the acceleration as well as the velocity goes to zero $t \rightarrow \infty$.

