MATH 2350: CALCULUS III

Spring 2011, Sections 002 & 004

Mid Term Test # 1 – Take Home Portion

Instructions

- You may use any resource available (web-resources, computational resources etc.) to answer these problems.
- Some problems may involve concepts related to the course but not discussed in the class.
- Please write the solutions in your own words.
- Answer on this test book only
- Please write clearly
- Show all necessary work to earn full credit. You may lose points if sufficient work is not shown.
- Please return the work on Friday, February 18th, IN CLASS.

 Name:

- 1. Consider the two planes \mathbb{P}_1 and \mathbb{P}_2 defined by 2x + z + 1 = 0 and 4x + 3y + 2z + 1 = 0 respectively.
 - (a) How is the "angle between two planes" defined. Explain with the aid of a sketch
 - (b) Find the angle between the two planes \mathbb{P}_1 and \mathbb{P}_2 .
 - (c) Find the coordinates of a point on the intersection of the two planes. (Sufficient to find the coordinates of only one point using any method, even trial-and-error would work.) Show that the point you found belongs to both planes.
 - (d) Find the line equation of the line of intersection of the two planes \mathbb{P}_1 and \mathbb{P}_2 .

- 2. Consider the dynamics of a particle on \mathbb{R}^2 using the time parameter t, is defined using the polar coordinates (r, θ) with $r = e^{-t^2/10}$ and $\theta = t^2$. (The trace of the path of this particle gives what is known as a logarithmic spiral.)
 - (a) Write the polar equation (in the form $r = f(\theta)$) which describes trace of the path of the particle.
 - (b) Find the parametric equation of this curve in rectangular Cartesian coordinates.
 - (c) Find the tangent to this curve.
 - (d) Find the velocity components of this particle along u_r and u_θ directions
 - (e) Find the acceleration components of this particle along u_r and u_θ directions
 - (f) At a given time t, calculate how far away the particle is from the origin.
 - (g) Find what happens to the acceleration, velocity and distance from the origin as $t \to \infty$.

- 3. Evaluate the following using the techniques suggested.
 - (a) Given $\mathbf{F}(t) = \sin^2(t^2 + 1)\mathbf{i} + \cos^2(t^2 + 1)\mathbf{j} + \sqrt{2}\sin(t^2 + 1)\cos(t^2 + 1)\mathbf{k}$ find $\mathbf{F}'(t)$, the derivative of $\mathbf{F}(t)$ w.r.t. the parameter t using the chain rule for vector valued functions.
 - (b) Given $\mathbf{F}(t) = t \left(e^t + e^{-t} \right) \mathbf{i} + t \left(e^t e^{-t} \right) \mathbf{j}$ and $\mathbf{G}(t) = t \left(e^t e^{-t} \right) \mathbf{i} t \left(e^t + e^{-t} \right) \mathbf{j}$, let $\mathbf{H}(t) = \mathbf{F}(t) \times \mathbf{G}(t)$ and $h(t) = \mathbf{F}(t) \bullet \mathbf{G}(t)$. Find $\mathbf{H}'(t)$ and h'(t) using two methods
 - i. First finding H(t) and h(t) and differentiating w.r.t t
 - ii. Using the dot and cross product rules of differentiation
 - (c) Discuss the continuity and smoothness properties of the vector valued function $\boldsymbol{F}(t) = \left(\frac{\sin(t)}{t}\right)\boldsymbol{i} + \tan(t)\boldsymbol{j}$.

For grading purposes only

1a	1b	1c	1d	2a	2b	2c	2d	2e	2f	2g	3a	3b1	3b2	3b3	3b4	3cc	3cs	Total	Grade