MATH 2350: CALCULUS III - SPRING 2011 - REVIEW

1. Evaluate the integral $\int_{0}^{1} \int_{x^{2}}^{x} \int_{y}^{x} \frac{z}{2} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x$
2. Find the volume of the region bound by the plane $4 x+3 y+6 z=12$ and the coordinate planes (i.e. $x \geq 0, y \geq 0$ and $z \geq 0)$.
3. Find the surface area of the region of the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ contained in the contained in the cylinder $x^{2}+y^{2}=1$. (HINT: Write the formula in rectangular coordinates and convert to polar coordinates.)
4. Consider the sum of two integrals: $\int_{-4}^{0} \int_{y / 4}^{\sqrt{y+4}-1} x y \mathrm{~d} x \mathrm{~d} y+\int_{0}^{4} \int_{y / 4}^{1} x y \mathrm{~d} x \mathrm{~d} y$. Note that both integrals have the same integrand.
(a) Sketch the domain of integration.
(b) Change the order of integration to $\mathrm{d} y \mathrm{~d} x$. You will see that it is possible to write it as a single integral. (HINT: Solve $x=\sqrt{y+4}-1$ for y)
5. Use cylindrical coordinates to find the volume between the two paraboloids $z=4-x^{2}-y^{2}$ and $z=-4+x^{2}+y^{2}$. (HINT: Setup the integral in rectangular coordinates and convert to cylindrical coordinates.)
6. Given $\boldsymbol{F}(x, y, z)=(y z) \boldsymbol{i}+(x z) \boldsymbol{j}+(x y) \boldsymbol{k}$ and $f(x, y, z)=x y z$ find the following if they exist. Otherwise say why they do not exist.
(a) $\operatorname{curl} \boldsymbol{F}$
(b) $\operatorname{div} \boldsymbol{F}$
(c) $\operatorname{curl}(\operatorname{div} \boldsymbol{F})$
(d) $\nabla^{2} f$
(e) $\operatorname{div}(\operatorname{grad} f)$
7. Evaluate line integral $\oint_{C} x^{2} y \mathrm{~d} s$ where, C is the closed path $O \rightarrow A \rightarrow B \rightarrow O$ shown in figure 1.
8. (a) Show that $\boldsymbol{F}(x, y, z)=\left(x y^{2} z^{2}\right) \boldsymbol{i}+\left(x^{2} y z^{2}\right) \boldsymbol{j}+\left(x^{2} y^{2} z\right) \boldsymbol{k}$ is a conservative vector field.
(b) Find the scalar potential f for this vector field.
(c) Evaluate the line integral $\int_{C} \boldsymbol{F} \bullet \mathrm{~d} \boldsymbol{R}$ over the path $O \rightarrow A \rightarrow B$ given in figure 2.

Figure 1: Figure for problem 7

Figure 2: Figure for problem 8c
9. Use Green's theorem to evaluate $\oint_{C} y^{2} \mathrm{~d} x+x^{2} \mathrm{~d} y$, where C is the path along the circle $x^{2}+y^{2}=4$, in the counterclockwise direction.
10. Evaluate the surface integral $\iint_{\mathcal{S}} x y \mathrm{~d} S$, where \mathcal{S} is the portion of the plane $x+y+z=1$ that lies inside the cylinder $x^{2}+y^{2}=1$ and $y \geq 0$.
11. Use Stokes' theorem to evaluate $\oint_{C} x y z \mathrm{~d} x+x z \mathrm{~d} y+x y \mathrm{~d} y$, where C is the intersection of the $x y$ plane and the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$, traversed counterclockwise as viewed from above.
12. Use the divergence theorem to calculate $\iint_{\mathcal{S}} \boldsymbol{F} \bullet \boldsymbol{N} \mathrm{d} S$ where $\boldsymbol{F}=x^{2} \boldsymbol{i}+y^{2} \boldsymbol{j}+z^{2} \boldsymbol{k}$, ans \mathcal{S} is the surface of the cube with a side 2 units and centered at the origin. (i.e. vertices at ($-2,0,0$), (2,0,0), $(0,-2,0),(0,2,0),(0,0,-2)$ and $(0,0,2))$
13. (a) Find the unit tangent, unit normal and the curvature of the plane curve $\boldsymbol{R}(t)=t^{2} \boldsymbol{i}+t \boldsymbol{j}$.
(b) Without any calculations, write the coordinates of the point at which this curve has maximum curvature. Give the intuitive reason for your answer.
14. The equation $\mathrm{e}^{x y z}=2$ defines z as an implicit function of the variables x and y. Find $\frac{\partial^{2} z}{\partial x \partial y}$.
15. Consider the surface defined by the function $z=\sin x+\sin y$.
(a) Find the directional derivative $\left.\mathrm{D}_{\boldsymbol{v}} z\right|_{(0,0,0)}$, of this function along the direction $\boldsymbol{v}=2 \boldsymbol{i}-2 \boldsymbol{j}+1 \boldsymbol{k}$, at the point $(0,0,0)$.
(b) Identify and classify the local extrema (max, min, saddle)
16. The velocity of a particle is given by $\boldsymbol{v}=t \sin (t) \boldsymbol{i}+t \cos (t) \boldsymbol{j}+t \boldsymbol{k}$.
(a) Find the acceleration of the particle.
(b) If the particle started at the point $2 \boldsymbol{i}+2 \boldsymbol{j}+1 \boldsymbol{k}$, at time $t=0$, find its position at time t.
17. Use the idea of the total derivative to find an approximation to $f(1.01,0.99)$ given $f(x, y)=2 x^{2} y$.
18. Use the chain rule to find $\frac{\partial z}{\partial t}$ where $z=x^{2} y^{3}, x=\cos u v, y=\sin u v, u=e^{t}$ and $v=e^{-t}$.
19. Show that the limit of $\frac{x^{2} y}{x^{2}+y}$ as $(x, y) \rightarrow(0,0)$ does not exist.
20. Find the tangent plane and the normal line to the paraboloid $z=x^{2}+y^{2}$, at the point $(1,2,5)$.

